On Invasion and Persuasion

Smithsonian magazine is, according to its website, “created for modern, well-rounded individuals with diverse interests” and “chronicles the arts, history, sciences and popular culture of the times.” Jess Righthand’s recent article, “The World’s Worst Invasive Mammals,” seems—despite its inclusion in the online edition’s “Science & Nature” section—better suited for the pop culture category.

Indeed, the story has more to do with sensationalism than science.

Feral Cat Population
Righthand’s claim that “there are an estimated 60 million feral cats in the United States alone” is conservative compared to some other estimates. David Jessup, for example, suggested in 2004 that there were 60–100 million [1], while, more recently, The American Bird Conservancy Guide to Bird Conservation puts the figure at 60–120 million [2] (neither cites a source).

Still, Merritt Clifton of Animal People, an independent newspaper dedicated to animal protection issues, makes a compelling argument that the population of feral cats in the U.S. is much smaller than is often reported, and may very well be on the decline. [3]

Clifton’s estimates are derived not from surveys of homeowners feeding stray and feral cats, but from “information about the typical numbers of cats found in common habitat types, gleaned from a national survey of cat rescuers… cross-compared with animal shelter intake data.” [4] In 2003, Clifton suggested that “the winter feral cat population may now be as low as 13 million and the summer peak is probably no more than 24 million.” [4]

Predation on Birds
Righthand puts the figure for annual bird deaths attributed to feral cats at “around 480 million.” Nowhere near the “one billion birds” proposed by Nico Dauphine and Robert Cooper, [5] of course, but more than enough to get the attention of Smithsonian readers.

But, as I’ve pointed out repeatedly, even high rates of predation do not equate to population declines (though, clearly, it’s easy to suggest as much). Many researchers have disputed the kind of broad, overreaching claims to which Righthand alludes. Biologist C.J. Mead, for example, reviewing the deaths of “ringed” (banded) birds reported by the British public, suggests that cats may be responsible for 6.2–31.3 percent of bird deaths. “Overall,” writes Mead, “it is clear that cat predation is a significant cause of death for most of the species examined.” Nevertheless, Mead concludes:

“there is no clear evidence of cats threatening to harm the overall population level of any particular species… Indeed, cats have been kept as pets for many years and hundreds of generations of birds breeding in suburban and rural areas have had to contend with their predatory intentions.” [6]

Mike Fitzgerald and Dennis Turner come to essentially the same conclusion: “We consider that we do not have enough information yet to attempt to estimate on average how many birds a cat kills each year. And there are few, if any studies apart from island ones that actually demonstrate that cats have reduced bird populations.” [7]

Then, too, there’s the critical distinction between compensatory and additive predation—again, a point I’ve made numerous times. Two very interesting studies have generated compelling evidence that birds killed by cats are, on average, significantly less healthy than those killed through non-predatory events (e.g., collisions with buildings). [8, 9] In other words, these birds probably weren’t going to live long enough to contribute to the overall population numbers; predation was compensatory rather than additive.

Public Health Threats
“When house cats are allowed free range outdoors by their owners,” argues Righthand, “or simply don’t have owners, they not only wreak havoc as opportunistic hunters, they can also spread disease. In addition to carrying rabies, 62 to 82 percent of cats in a recent study tested positive for toxoplasmosis.” Here, Righthand seems to be cribbing off of Hildreth, Vantassel, and Hygnstrom, of “Feral Cats and Their Management” fame—hardly a reputable source.

Rabies
Regarding rabies—a topic I’ll save for future posts—I think it’s important to put this into perspective. I happen to have data from Florida handy, and according to that state’s Department of Health, approximately 22,000 Florida residents have died of the flu or pneumonia since 2006 (actually, that figure accounts for only 24 of Florida’s 67 counties, so the total is surely much higher).

By way of comparison: from 2005 through mid-May of this year, there were 11 reported cases of rabies in humans across the entire country (though, I believe there were a handful of reported cases this summer as well).

In terms of public health, then, I think we’re all better off focusing on frequent hand washing, sneezing into our sleeves, and the like—as opposed to, say, exterminating this country’s most popular companion animal by the millions.

Toxoplasma gondii (I)
While it’s true that cats are the definitive host of Toxoplasma gondii, it’s important to note that “wild game can be a source of T. gondii infection in humans, cats, and other carnivores. Serologic data show that a significant number of feral pigs, bears, and cervids are exposed to T. gondii. [10]

“Humans,” write Elmore et al., “usually become infected through ingestion of oocyst-contaminated soil and water, tissue cysts in undercooked meat, or congenitally. Because of their fastidious nature, the passing of non-infective oocysts, and the short duration of oocyst shedding, direct contact with cats is not thought to be a primary risk for human infection.” [11]

But to Righthand’s point: the rate of cats testing positive—or seroprevalence—is, in any event, not a useful measure of their ability to infect other animals or people.

According to Dubey and Jones, “most cats seroconvert after they have shed oocysts. Thus, it is a reasonable assumption that most seropositive cats have already shed oocysts.” [12] “Testing positive,” in this case, is nothing more than the detection of antibodies resulting from seroconversion (the same process, by the way, that takes place in humans after receiving a flu shot).

So, what exactly is Righthand’s point? Did she simply not do her homework here, or is the idea to portray these cats as a threat far, far beyond what the scientific evidence supports? Both, I suspect.

Toxoplasma gondii (II)
T. gondii
, Righthand continues, “has been shown to cause neurological damage to sea otters and other marine mammals that are exposed when heavy rainfall washes infected cat feces into the water.” Again, this is terrain I’ve covered previously. (Righthand, it seems, could do herself—and Smithsonian readers—a favor by subscribing to Vox Felina!)

Yes, T. gondii has been linked to the illness and death of marine life, primarily sea otters [13], prompting investigation into the possible role of free-roaming (both owned and feral) cats. [14, 15] It’s generally thought that oocysts (the mature, infective form of the parasite) are transferred from soil contaminated with infected feces to coastal waterways by way of freshwater run-off. [15]

However, one study found that 36 of 50 sea otters from coastal California were infected with the Type X strain of T. gondii [16], a type linked to wild felids (mountain lions and a bobcat, in this case), but not to domestic cats. [15] A recently published study from Germany seems to corroborate these findings. Herrmann et al. analyzed 18,259 fecal samples (all from pet cats) for T. gondii and found no Type X strain. (It’s interesting to note, too, that only 0.25% of the samples tested positive for T. gondii). [17]

Once again, we’re back to the question: What is Righthand trying to accomplish here?

Population Impacts
“Cats have,” writes Righthand, “also hurt populations of birds, reptiles and other creatures. The black stilt of New Zealand (a seabird), the Okinawa woodpecker and the Cayman Island ground iguana are just a few of the dozens of endangered species at risk due to the proliferation of feral cats.”

At the risk of pointing out the obvious, endangered species are—by definition—at risk due to the proliferation of all sorts of threats. That’s how they became endangered in the first place. To suggest, as Righthand does, that cats are the sole threat these animals face is both misleading and irresponsible.

Righthand (taking a cue, perhaps, from the authors of The ABC Guide?) also makes the common mistake of using island impacts (which are, themselves, more complex than often acknowledged) to imply impacts elsewhere (better yet: everywhere). Readers, it seems, are on their own in terms of doing any research on the topic.

Mission Failure
How much of the blame we can put on Righthand, I don’t know. According to Smithsonian’s website, she’s an intern with the magazine. Had the editors wanted a more thoroughly researched article, they could have demanded one. (This, some readers will recall, is not the first time I’ve been disappointed with the Smithsonian’s lack of rigor.)

According to its website, the mission of the Smithsonian is straightforward but ambitious: “the increase and diffusion of knowledge.” Righthand’s article—misleading at best—falls well short. It seems she’s still struggling with how to best express the organization’s proclaimed values—in this case, going overboard on the creativity at the expense of excellence and integrity.

Literature Cited
1. Jessup, D.A., “The welfare of feral cats and wildlife.” Journal of the American Veterinary Medical Association. 2004. 225(9): p. 1377-1383. http://avmajournals.avma.org/doi/abs/10.2460/javma.2004.225.1377

2. Lebbin, D.J., Parr, M.J., and Fenwick, G.H., The American Bird Conservancy Guide to Bird Conservation. 2010, London: University of Chicago Press.

3. Clifton, M. (2003) Roadkills of cats fall 90% in 10 years—are feral cats on their way out? http://www.animalpeoplenews.org/03/11/roadkills1103.html Accessed May 23, 2010.

4. Clifton, M. Where cats belong—and where they don’t. Animal People 2003 [cited 2009 December 24].  http://www.animalpeoplenews.org/03/6/wherecatsBelong6.03.html.

5. Dauphiné, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2009. p. 205–219. www.pwrc.usgs.gov/pif/pubs/McAllenProc/articles/PIF09_Anthropogenic%20Impacts/Dauphine_1_PIF09.pdf

6. Mead, C.J., “Ringed birds killed by cats.” Mammal Review. 1982. 12(4): p. 183-186. http://dx.doi.org/10.1111/j.1365-2907.1982.tb00014.x

7. Fitzgerald, B.M. and Turner, D.C., Hunting Behaviour of domestic cats and their impact on prey populations, in The Domestic Cat: The biology of its behaviour, D.C. Turner and P.P.G. Bateson, Editors. 2000, Cambridge University Press: Cambridge, U.K.; New York. p. 151–175.

8. Baker, P.J., et al., “Cats about town: is predation by free-ranging pet cats Felis catus likely to affect urban bird populations? Ibis. 2008. 150: p. 86-99. http://dx.doi.org/10.1111/j.1474-919X.2008.00836.x

9. Møller, A.P. and Erritzøe, J., “Predation against birds with low immunocompetence.” Oecologia. 2000. 122(4): p. 500-504. http://www.springerlink.com/content/ghnny9mcv016ljd8/

10. Hill, D.E., Chirukandoth, S., and Dubey, J.P., “Biology and epidemiology of Toxoplasma gondii in man and animals.” Animal Health Research Reviews. 2005. 6(01): p. 41-61. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=775956&fulltextType=RA&fileId=S1466252305000034

11. Elmore, S.A., et al., “Toxoplasma gondii: epidemiology, feline clinical aspects, and prevention.” Trends in Parasitology. 26(4): p. 190-196. http://www.sciencedirect.com/science/article/B6W7G-4YHFWNM-1/2/2a468a936eb06649fde0463deae4e92f

12. Dubey, J.P. and Jones, J.L., “Toxoplasma gondii infection in humans and animals in the United States.” International Journal for Parasitology. 2008. 38(11): p. 1257-1278. http://www.sciencedirect.com/science/article/B6T7F-4S85DPK-1/2/2a1f9e590e7c7ec35d1072e06b2fa99d

13. Jones, J.L. and Dubey, J.P., “Waterborne toxoplasmosis – Recent developments.” Experimental Parasitology. 124(1): p. 10-25. http://www.sciencedirect.com/science/article/B6WFH-4VXB8YT-2/2/8f9562f64497fe1a30513ba3f000c8dc

14. Dabritz, H.A., et al., “Outdoor fecal deposition by free-roaming cats and attitudes of cat owners and nonowners toward stray pets, wildlife, and water pollution.” Journal of the American Veterinary Medical Association. 2006. 229(1): p. 74-81. http://avmajournals.avma.org/doi/abs/10.2460/javma.229.1.74

15. Miller, M.A., et al., “Type X Toxoplasma gondii in a wild mussel and terrestrial carnivores from coastal California: New linkages between terrestrial mammals, runoff and toxoplasmosis of sea otters.” International Journal for Parasitology. 2008. 38(11): p. 1319-1328. http://www.sciencedirect.com/science/article/B6T7F-4RXJYTT-2/2/32d387fa3048882d7bd91083e7566117

16. Conrad, P.A., et al., “Transmission of Toxoplasma: Clues from the study of sea otters as sentinels of Toxoplasma gondii flow into the marine environment.” International Journal for Parasitology. 2005. 35(11-12): p. 1155-1168. http://www.sciencedirect.com/science/article/B6T7F-4GWC8KV-2/2/2845abdbb0fd82c37b952f18ce9d0a5f

17. Herrmann, D.C., et al., “Atypical Toxoplasma gondii genotypes identified in oocysts shed by cats in Germany.” International Journal for Parasitology. 2010. 40(3): p. 285–292. http://www.sciencedirect.com/science/article/B6T7F-4X1J771-2/2/dc32f5bba34a6cce28041d144acf1e7c

Inside Job

Results from the American Pet Products Association’s 2009­­–2010 National Pet Owners Survey suggest that cats in this country are spending more time indoors than ever before. Although the proportion of owners keeping their cats inside at night has remained relatively steady since 1998 (at approximately 66%), their has been a 14% increase in daytime confinement (from 56% to 64%) over the same period. [1]

Indoor&Outdoor Access-APPA

It must be noted that owners were asked where they usually kept their cat(s), thereby raising some doubts about the accuracy of their responses. (There are actually two issues here: first is the level of truthfulness—did owners, intentionally or not, provide accurate information? But there is also the obvious ambiguity surrounding the term usually.) Nevertheless, these results correspond reasonably well with those of two earlier surveys: one commissioned by the American Bird Conservancy (ABC) in 1997, [2] the other conducted by Clancy et al. in 2001 [3] (the only other surveys I’ve found that investigated this issue specifically).

The ABC’s study (in which 250 cat owners participated in a telephone survey) indicated that “35% keep their cats indoors all of the time,” while “31% keep them indoors mostly with some outside access.” [2]

The 2001 survey included 168 cat owners, each of whom was part of the Feline Health Study, conducted at the Foster Hospital for Small Animals, Cummings School of Veterinary Medicine, Tufts University. Sixty percent of these cats were “strictly indoor cats,” while 40% “had some level of outdoor access.” [3] Probing further, Clancy et al. discovered that nearly half of the cats with outdoor access were outside for two or fewer hours a day. And 29% of them were outdoors for less than an hour each day. [3]

Considering the differences in sampling (most notably the fact that participants in the 2001 survey were all clients of a veterinary hospital, whereas APPA survey results for 2000 indicate that 27% of cat owners did not visit the vet in the previous 12 months), and the inherent uncertainty surrounding the terms mostly, usually, and some, the results of these three surveys are remarkably similar.

Counting Cats
Such findings are critical for developing accurate estimates of the number of birds killed by cats (assuming a reasonable level of accuracy is achievable, given the complexity of the issue). Simply put, cats that don’t go outside can’t kill birds.

Recognizing this, some researchers have inflated their figures for cats allowed outdoors. [4–6]

Dauphiné and Cooper, [6] for instance, cite the APPA’s 2007–2008 survey when referring to the number of owned cats in the U.S., but either ignored or overlooked its findings about confinement: 63% of owners reported that they kept their cat(s) indoors during the day, 70% during the night. (It’s also possible that the authors consulted only the APPA’s online summary, which probably didn’t include this information.)

By contrast, Dauphiné and Cooper claim that 65% of pet cats “are free-ranging outdoor cats for at least some portion of the day,” [6] citing not the APPA survey, but Linda Winter’s 2004 paper, “Trap-neuter-release programs: the reality and the impacts” (which can be downloaded here). Indeed, Winter, the former director of the ABC’s Cats Indoors! campaign, had suggested as much—misrepresenting the findings of a study commissioned by her own organization:

“A 1997 nationwide random telephone survey indicated that 66% of cat owners let their cats outdoors some or all of the time.” [7]

Double the proportion of cats allowed outdoors, and—just like that—the number of birds killed by pet cats doubles too. (Dauphiné and Cooper actually go much further, employing some grossly inflated predation rates as well.)

Counting Birds
Of course, such estimates do not necessarily relate directly to population impacts. The predation may be largely compensatory, for example; and there are source-sink dynamics to be considered as well.

Nevertheless, researchers persist—more often, it seems, in pursuit of staggering, media-friendly figures than a better understanding of what’s actually going on (e.g., Dauphiné and Cooper’s bumper-sticker-worthy “one billion birds”). As a result, the scientific literature is plagued with some rather spectacular failures where predation numbers are concerned (e.g., The Wisconsin Study, Christopher Lepczyk’s dissertation, Carol Fiore’s thesis, etc.).

*     *     *

The surprising level of agreement among the three “outdoor access” studies provides researchers a rare opportunity to agree among themselves. Which, in turn, could move us closer to an honest debate of the larger issues—arguing about which action is most appropriate, for instance, rather than about whose numbers are most valid.

Despite how results of these surveys have been—as recently as last year—overlooked, ignored, and misrepresented, I remain cautiously optimistic. As Patronek has suggested, “predation of songbirds tends to be noticed because it takes place during the day.” [8] It’s time predation research received the same kind of visibility. Sunlight, after all, is said to be the best of disinfectants.

Note: There is a an amendment to this post here.

Literature Cited
1. APPA, 2009–2010 APPA National Pet Owners Survey. 2009, American Pet Products Association: Greenwich, CT.

2. ABC, Human Attitudes and Behavior Regarding Cats. 1997, American Bird Conservancy: Washington, DC. http://www.abcbirds.org/abcprograms/policy/cats/materials/attitudes.pdf

3. Clancy, E.A., Moore, A.S., and Bertone, E.R., “Evaluation of cat and owner characteristics and their relationships to outdoor access of owned cats.” Journal of the American Veterinary Medical Association. 2003. 222(11): p. 1541-1545.

4. Coleman, J.S. and Temple, S.A., On the Prowl, in Wisconsin Natural Resources. 1996, Wisconsin Department of Natural Resources: Madison, WI. p. 4–8. http://dnr.wi.gov/wnrmag/html/stories/1996/dec96/cats.htm

5. Lepczyk, C.A., Mertig, A.G., and Liu, J., “Landowners and cat predation across rural-to-urban landscapes.” Biological Conservation. 2003. 115(2): p. 191-201.

6. Dauphiné, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2009. p. 205–219.

7. Winter, L., “Trap-neuter-release programs: the reality and the impacts.” Journal of the American Veterinary Medical Association. 2004. 225(9): p. 1369-1376.

8. Patronek, G.J., “Free-roaming and feral cats—their impact on wildlife and human beings.” Journal of the American Veterinary Medical Association. 1998. 212(2): p. 218–226.

Repeat After Me

Listening to NPR’s On the Media this weekend, I was struck by a story (first broadcast in 2006) about how certain “sticky” numbers—however dubious—find their way into the media landscape and beyond, as On the Media co-host Brooke Gladstone noted:

“Four years ago, we delved into the mysterious number, said to be 50,000, of child predators online at any given time. It was cited by the NBC Dateline program “To Catch a Predator” and also by then Attorney General Alberto Gonzales.

But spokespersons for the FBI, the National Center for Missing and Exploited Children, and the Crimes against Children Research Center said it was not based on any research they were aware of. The A.G.’s office at the time, well, they said it came from Dateline.”

Wall Street Journal columnist Carl Bialik, who spoke to Gladstone for the story, described the process whereby such slippery figures gain traction:

“An interesting phenomenon of these numbers is that they’ll often be cited to an agency or some government body, and then a study will pick it up, and then the press will repeat it from that study. And then once it appears in the press, public officials will repeat it again, and now it’s become an official number.”

All of which sounds very familiar—Bialik could easily be describing the “official numbers” put out by so many TNR opponents. Among those that have gained the most currency are the predation estimates from the Wisconsin Study, the American Bird Conservancy’s figure for the proportion of birds in the diets of free-roaming cats, and Dauphiné and Cooper’s estimate of free-roaming cats in the U.S.

The Wisconsin Study
Despite its having been discredited long ago (see, for example, “Addressing the Wisconsin Study”), the Wisconsin Study continues to be cited as if its estimate of 8–219 million birds killed by the state’s rural cats [1] was credible. As recently as last year, Longcore et al. cited the work in their essay “Critical Assessment of Claims Regarding Management of Feral Cats by Trap–Neuter–Return.” [2]

This, despite the fact that—15 years earlier—co-author Stanley Temple told the press:

“The media has had a field day with this since we started. Those figures were from our proposal. They aren’t actual data; that was just our projection to show how bad it might be.” [3]

It’s true: the media has had a field day. Among the major newspapers to cite the Wisconsin Study are the Wall Street Journal [4], the New York Times [5], and the Los Angeles Times [6]. However, as I’ve described previously, it’s been the wildlife conservationists and bird advocates who’ve really had a field day with the Wisconsin Study:

  • The American Bird Conservancy (ABC) refers to the study, in its brochure Domestic Cat Predation on Birds and Other Wildlife. And the ABC goes one step further, pointing out that Coleman and Temple’s estimate was for rural cats, and that “suburban and urban cats add to that toll.” [7]
  • A 2009 article in Audubon Magazine suggests “cats were annually knocking off somewhere in the neighborhood of 8 million birds just in rural Wisconsin.” [9] To the magazine’s credit, they used Coleman and Temple’s low estimate—but none of the numbers from the Wisconsin Study are scientifically sound.

Birds Represent 20–30% of the Diet of Free-roaming Cats
According to an ABC report (downloadable from their website), “extensive studies of the feeding habits of domestic, free-roaming cats… show that approximately… 20 to 30 percent [of their diet] are birds.”

This, apparently, is the same report that Ellen Perry Berkeley debunked in her book, TNR Past Present and Future: A history of the trap-neuter-return movement, noting that the ABC’s 20–30% figure was not based on “extensive studies” at all. [10] In fact, just three sources were used: the now-classic “English Village” study by Churcher and Lawton [11], the Wisconsin Study (described above), and Mike Fitzgerald’s contribution to “The Domestic Cat: The Biology of Its Behaviour.” [12]

This gets a little complicated, so bear with me.

When Churcher and Lawton reported, “overall, birds comprised 35% of the total catch,” [11] they were referring to prey tallies recorded by study participants—not to the overall diets of the cats involved. Figures obtained through similar methods for the Wisconsin Study were 20–23%, [1, 13, 14] which the authors suggest—citing Fitzgerald’s comprehensive review of predation and dietary studies—are in line with other work:

“Extensive studies of the feeding habits of free-ranging domestic cats over 50 years and four continents [12] indicate that small mammals make up approximately 70% of these cats’ prey while birds make up about 20%.” [14]

But they’re comparing apples and oranges. Both the English Village and Wisconsin Studies report the percentage of birds returned as a portion of the “total catch,” whereas Fitzgerald reports percentage by frequency (i.e., the occurrence of birds in the stomach contents or scats of free-roaming cats), a point apparently lost on Coleman and Craven. The 21% figure [12] they refer to, then, is simply not comparable to their own (or that of the English Village study, a fact Churcher and Lawton acknowledge in their paper). As Berkeley notes, “this would put birds, as a portion of the diet of cats, at roughly 7 to 10.5 percent—nowhere near the ‘20 to 30 percent’ figures unleashed on the unscientific public by ABC!”

To put all of this into more familiar terms, it’s a bit like saying that coffee makes up 20–30% of the American diet versus saying that 20–30% of Americans drink coffee each day.

Nevertheless, 13 years after the ABC first published its report, the myth persists. The report—including the mistaken dietary figures—is still available. And the National Audubon Society has helped perpetuate the error, noting in its Resolution Regarding Control and Management of Feral and Free-Ranging Domestic Cats:

“…it has been estimated that birds represent 20–30% of the prey of feral and free-ranging domestic cats.”

Estimates of Free-roaming Cats
In January, Steve Holmer, the ABC’s Senior Policy Advisor, told the Los Angeles Times, “The latest estimates are that there are about . . . 160 million feral cats [nationwide].” Sounds like an awful lot of cats—nearly one for every two humans in the country. So where does this figure come from?

The source is a paper by Nico Dauphiné and Robert Cooper (which can be downloaded via the ABC website), presented at the Fourth International Partners in Flight conference. In it, Dauphiné and Cooper use some remarkably creative accounting, beginning with an unsubstantiated estimate of unowned cats, to which they add an inflated number of owned cats that spend time outdoors. In the end, they conclude that there are “117–157 million free-ranging cats in the United States.” [15] (For a more thorough explanation, see my previous post on the subject.)

Estimating the number of free-roaming cats wasn’t even the point of their paper. As the title—“Impacts of Free-ranging Domestic Cats (Felis catus) On Birds In the United States: A Review of Recent Research with Conservation and Management Recommendations”—suggests, the primary purpose was to describe the cats’ impact on birds. The authors’ exaggerated figure was merely a convenient route to their estimate of birds killed annually by cats: “a minimum of one billion birds” [15] (which, it should be clear, has the potential to become a very sticky number).

Holmer goes a step further, using only the upper limit of the range published by Dauphiné and Cooper, and making the subtle—but important—shift from free-ranging to feral cats.

When I asked him about this, he explained that those figures were “based on an earlier version of Nico’s latest paper and are now being updated in our materials.” I don’t know that any such changes were made; and in any event, the bogus estimate has already been published in the L.A. Times—as if it were true.

*     *     *

TNR opponents will often point to the vast collection of research studies, government reports, news accounts, and the like, that support their assertions. Drill down a bit into that collection, though, and they all start to look alike: the same familiar sources, the same flawed studies—and the same bogus figures. These figures have become the kind of “official numbers” Bialik refers to: quantitative poseurs owing their popularity to tireless—and irresponsible—repetition more than anything else.

Literature Cited
1. Coleman, J.S. and Temple, S.A., On the Prowl, in Wisconsin Natural Resources. 1996, Wisconsin Department of Natural Resources: Madison, WI. p. 4–8. http://dnr.wi.gov/wnrmag/html/stories/1996/dec96/cats.htm

2. Longcore, T., Rich, C., and Sullivan, L.M., “Critical Assessment of Claims Regarding Management of Feral Cats by Trap–Neuter–Return.” Conservation Biology. 2009. 23(4): p. 887–894.

3. Elliott, J., The Accused, in The Sonoma County Independent. 1994. p. 1, 10.

4. Sterba, J.P., Tooth and Claw: Kill Kitty?, in Wall Street Journal. 2002: New York. p. A.1

5. Barcott, B., Kill the Cat That Kills the Bird?, in New York Times. 2007: New York. http://www.nytimes.com/2007/12/02/magazine/02cats-v–birds-t.html

6. Kennedy, J.M., Killer Among Us, in Los Angeles Times. 2003: Los Angeles. http://articles.latimes.com/2003/dec/23/news/os-cat23

7. ABC, Domestic Cat Predation on Birds and Other Wildlife. n.d., American Bird Conservancy: The Plains, VA. www.abcbirds.org/abcprograms/policy/cats/materials/predation.pdf

8. FWS, Migratory Bird Mortality. 2002, U.S. Fish and Wildlife Service: Arlington, VA. www.fws.gov/birds/mortality-fact-sheet.pdf

9. Williams, T., Felines Fatale, in Audubon Magazine. 2009, National Audubon Society: New York, NY. http://www.audubonmagazine.org/incite/incite0909.html

10. Berkeley, E.P., TNR Past present and future: A history of the trap-neuter-return movement. 2004, Bethesda, MD: Alley Cat Allies.

11. Churcher, P.B. and Lawton, J.H., “Predation by domestic cats in an English village.” Journal of Zoology. 1987. 212(3): p. 439-455.

12. Fitzgerald, B.M., Diet of domestic cats and their impact on prey populations, in The Domestic cat: The biology of its behaviour, D.C. Turner and P.P.G. Bateson, Editors. 1988, Cambridge University Press: Cambridge; New York. p. 123–147.

13. Coleman, J.S. and Temple, S.A., Effects of Free-Ranging Cats on Wildlife: A Progress Report, in Fourth Eastern Wildlife Damaage Control Conference. 1989: University of Nebraska—Lincoln. p. 8–12. http://digitalcommons.unl.edu/ewdcc4/7

14. Coleman, J.S., Temple, S.A., and Craven, S.R., Cats and Wildlife: A Conservation Dilemma. 1997, University of Wisconsin, Wildlife Extension. http://forestandwildlifeecology.wisc.edu/wl_extension/catfly3.htm

15. Dauphiné, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2009. p. 205–219.

The Work Speaks—Part 5: Jumping to Conclusions

In April, Conservation Biology published a comment authored by Christopher A. Lepczyk, Nico Dauphiné, David M. Bird, Sheila Conant, Robert J. Cooper, David C. Duffy, Pamela Jo Hatley, Peter P. Marra, Elizabeth Stone, and Stanley A. Temple. In it, the authors “applaud the recent essay by Longcore et al. (2009) in raising the awareness about trap-neuter-return (TNR) to the conservation community,” [1] and puzzle at the lack of TNR opposition among the larger scientific community:

“…it may be that conservation biologists and wildlife ecologists believe the issue of feral cats has already been studied enough and that the work speaks for itself, suggesting that no further research is needed.”

In fact, “the work”—taken as a whole—is neither as rigorous nor as conclusive as Lepczyk et al. suggest. And far too much of it is plagued by exaggeration, misrepresentations, errors, and obvious bias. In Part 4 of this series, I discussed how feral cat/TNR researchers often misuse averages to characterize skewed distributions, and how that error overestimates the impact of free-roaming cats on wildlife.

For the next few posts, I’m going to critique three of the studies most often cited by these researchers, starting with Cole Hawkins’ 1998 PhD dissertation, Impact of a subsidized exotic predator on native biota: Effect of house cats (Felis catus) on California birds and rodents. I mentioned Hawkins’ dissertation previously, but only briefly. Here, I’ll take a closer look, paying particular attention to how he gets from his results to his rather dubious conclusions.

The Study
Hawkins’ two-year study was conducted in Alameda County, CA, spread across two adjacent parks. He started by designating a “cat area” (where, nearby, free-roaming cats were being fed) and a “no-cat area” (where no cats were being fed), and then designated “rodent grids” (nine locations used for trapping and counting rodents) and walking transects (from which bird surveys were conducted) in each area. Hawkins then compared the number of birds and rodents detected in the two areas.

Among Hawkins’ conclusions:

“The differences observed in this study were the results of the cat’s predatory behavior.” [2] (It should be noted that Hawkins tempered this assertion in his 1999 article summarizing the work: “The differences observed in this study may have been due to the cats’ predatory behavior.” [3] (italics mine))

And this:

“The presence of cats in this study area already has caused a shift in the composition of the rodent community; it is possible that a shift in the larger biotic community could follow.”

And, finally:

“It is not prudent to manage for wildlife and allow cat feeding in the same parks.”

Unfair Comparisons
But Hawkins’ findings are insufficient to supports such claims; indeed, his methodology doesn’t allow for them. Hawkins has no idea what the cat area was like prior to his arrival; he merely assumes the populations of birds and rodents would have been identical to those found at the no-cat area, and makes his comparisons accordingly. In fact, there are a number of factors that indicate that the two areas are not as comparable as Hawkins suggests:

  • The cat area was almost a peninsula, with a lake on one side and a residential area (within 0.5 km) on the other. The no-cat area, on the other hand, was located largely in the interior of the parks.
  • Hawkins notes that there were more people in the cat area (of­ten twice as many as were observed at the no-cat area), but dismisses the possibility that their presence may have influenced the numbers of birds and rodents he observed there.
  • The habitat along the 2.2 km transects from which bird counts were conducted varied considerably between the two areas. Compared to the no-cat area, the cat area had 31% less chaparral, 183% more trees, 52% less grass, and 240% more “modified” habitat (it’s not clear what Hawkins means by “modified,” but I assume it refers to habitat that reflects significant human impact).
  • Finally, the presence of pesticides may have played a role. According to a 2002 report (the earliest I was able to find) from the East Bay Regional Park District, “The focus of Lake Chabot’s weed control efforts are vegetation reduction within the two-acre overflow parking lot, picnic sites and firebreaks around park buildings, corp. yard, service yard, and the Lake Chabot classroom.” [4] And it’s clear from Hawkins’ 1999 article that the cat area did include picnic sites: “…over half of the cat scat in this study was collected under and around picnic tables.” [3] Now, Hawkins’ fieldwork was done in 1995 and 1996, but if there was any pesticide use during the study period, it may have affected the results—especially if the pesti­cide was distributed differently across the two areas.

Cats and Birds
“Almost twice as many birds were seen on the no-cat transect as on the cat transect,” writes Hawkins. But it’s not quite as simple as that—the details reveal a rather complex, often uneven count over the course of the study. Nevertheless—and despite the differences between the two areas—Hawkins’ only explanation is the cats. This is especially true for ground-feeders:

The preference of ground feeding birds for the no-cat treatment was striking; for ex­ample, California quail were seen almost daily in the no-cat area, whereas they were never seen in the cat area.

What’s more striking to me is the fact that five of the nine ground-feeding species included in the study showed no preference for either area. But Hawkins scarcely acknowledges the point, and doesn’t even hint at an explanation. “Birds that were known to nest on or near the ground or in shrubs and vines ≤ 1.5 m in height” also showed no preference between the two areas (though no nest counts were conducted).

The picture painted by Hawkins is that bird species absent from the cat area represent species killed off by the cats. But it’s generally accepted that cats are opportunistic hunters, catching whatever prey is readily available and easily caught. [5–8] Fitzgerald and Turner, for ex­ample, argue that “domestic cats (both house and feral ones) are best described as generalist resident preda­tors, exploiting a wide range of prey, and able to switch readily from one prey to another.” [9] So, how is it that some species were present at the cat site while others were not? Again, Hawkins offers no explanation.

In fact, it’s clear from Hawkins’ study that the cats aren’t much of threat at all to the birds—even vulnerable ground-feeding and ground-nesting species—in the cat area. Of the 120 scat samples found by searching the cat area, “65% were found to contain rodent hair and 4% feathers.” [2] This finding comes toward the end of the study, when the cat population was at its greatest—and still, only 4% contained feathers. And this could easily represent one cat and one bird.

One final point about the birds: Hawkins suggests (without explanation) that the olive-sided flycatcher, American robin, and Stellar’s jay—all of which showed no preference for either the no-cat area or the cat area—may have been responding to a “specialized habitat.” Could it be that the birds not seen in the cat area were also responding to a specialized habitat—by “migrating” to a place with less human activity (e.g., the no-cat area), for example? Once again, Hawkins has no comment.

Cats and Rodents
The fact that scats indicated rodents were predated to a greater extent than birds is hardly surprising [5, 6, 9, 10], but it should be noted the 65% figure represents the frequency of occurrence, and not a predation rate (a topic I address in greater detail here).

Hawkins’ analysis didn’t reveal whether the rodent hair was that of deer mice, harvest mice (both of which were found less often in the cat area than in the no-cat area), house mice (found more often in the cat area), or California voles (which showed no preference for either area). In any case, it’s not clear that the cats were responsible for the presence or absence of any of these rodent species. Again, the selective dietary habits suggested by Hawkins simply don’t fit with the domestic cat’s profile as a “generalist resident predator.”

Two additional points that might explain the differences Hawkins observed concern the habitat of the cat area. First, there’s the nearby lake and residences—potential sources of pollution that could affect nearby plant and animal life. Secondly, there’s the issue of possible pesticide use mentioned previously. As I say, it’s largely conjecture on my part; at the same time, though, it’s easy to imagine its potential impact on small mammals (and ground-feeding birds, for that matter).

Finally, Hawkins suggests that certain bird species were responding to specialized habitat—perhaps the rodents were simply doing the same.

Cats
Hawkins used track plates (baited devices that detect the presence of mammals by way of preserved “footprints”) for “estimating a relative cat presence index,” but found only one cat track in 200 track plate nights. And, “in 560 days of exposure, no scat was found in any of the sand boxes.” [2] Now, the cats were seen at feeding stations and on the rodent grids of the cat area—as many as 26 during a one-week period toward the end of the study. But clearly, they were not where Hawkins was expecting them to be. If, after two years at the study site, Hawkins was unable to get a better handle on the presence of the cats, how can he be so sure of their behavior when it comes to predation?

If, as Hawkins argues, the differences observed between the two areas are a result of the cats’ predatory behavior, then one would expect the number of birds and rodents to decrease as the number of cats increases. Yet, Hawkins’ findings don’t bear this out.

And then there are the unanswered questions about the cats—for example:

  • Where did these cats come from—were they illegally dumped, the result of nearby residents’ unsterilized cats breeding? Did they belong to the residents?
  • Were the cats sterilized? (Their increasing numbers would suggest that they weren’t.)
  • Were these cats part of a managed TNR colony? (Local newspaper reports indicate a long-standing battle between TNR advocates and opponents. [11–13])

Considering the central role these cats played in Hawkins’ two-year study, he knew surprisingly little about their behavior—including various factors that surely had an impact on his findings.

*     *     *

In their recent comment, Lepczyk et al. suggest that conservation biologists and wildlife ecologists “look to the evolutionary biology community” [1] for an example of how to influence policy. For feral cat/TNR opponents interested in shaping policy, it seems Hawkins’ study has become quite popular. [14–17] Actually, Nico Dauphiné and Robert J. Cooper take its already-tenuous claims one step further, citing Hawkins’ work (actually a 2004 conference paper that summarizes his dissertation [18]) as evidence that “the continuous predation pressure exerted by exotic predators in exponentially high densities can and has resulted in numerous local extinctions of continental land birds.” [8]

But is Hawkins’ methodology one that evolutionary biologists would advocate—or even recognize? Not likely.

Hawkins draws conclusions—infers important causal relationships—without any evidence of what “pre-treatment” conditions were like. And ignores entirely his own findings when they contradict his conclusions. Rather than beginning his inquiry with questions to answer, it seems Hawkins had his answer from the outset. At best, his work is an interesting pilot study—generating research questions for a more rigorous, less biased investigation.

References
1. Lepczyk, C.A., et al., “What Conservation Biologists Can Do to Counter Trap-Neuter-Return: Response to Longcore et al.” Conservation Biology. 2010. 24(2): p. 627-629.

2. Hawkins, C.C., Impact of a subsidized exotic predator on native biota: Effect of house cats (Felis catus) on California birds and rodents. 1998, Texas A&M University.

3. Hawkins, C.C., Grant, W.E., and Longnecker, M.T., “Effects of Subsidized House Cats on California Birds and Rodents.” Transactions of the Western Section of the Wildlife Society. 1999. 35: p. 29–33.

4. Brownfield, N.T., 2002 Annual Analysis of Pesticide Use East Bay Regional Park District. 2003, East Bay Regional Park District. www.ebparks.org/files/stew_pest_report_02.pdf

5. Barratt, D.G., “Predation by house cats, Felis catus (L.), in Canberra, Australia. II. Factors affecting the amount of prey caught and estimates of the impact on wildlife.” Wildlife Research. 1998. 25(5): p. 475–487.

6. Fitzgerald, B.M., Diet of domestic cats and their impact on prey populations, in The Domestic cat: The biology of its behaviour, D.C. Turner and P.P.G. Bateson, Editors. 1988, Cambridge University Press: Cambridge; New York. p. 123–147.

7. Lepczyk, C.A., Mertig, A.G., and Liu, J., “Landowners and cat predation across rural-to-urban landscapes.” Biological Conservation. 2003. 115(2): p. 191-201.

8. Dauphiné, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2010. p. 205–219.

9. Fitzgerald, B.M. and Turner, D.C., Hunting Behaviour of domestic cats and their impact on prey populations, in The Domestic Cat: The biology of its behaviour, D.C. Turner and P.P.G. Bateson, Editors. 2000, Cambridge University Press: Cambridge, U.K.; New York. p. 151–175.

10. Woods, M., McDonald, R.A., and Harris, S., “Predation of wildlife by domestic cats Felis catus in Great Britain.” Mammal Review. 2003. 33(2): p. 174-188.

11. Chui, G., Stray Cats Live Harsh Lives in Area Parks, in San Jose Mercury News. 1985. p. 1

12. Bogue, G., Those Poor Cats Need a Human Assist, in Contra Costa Times. 1997: Walnut Creek, CA. p. A02

13. n.a., Spring controversy: What to do with feral cats?, in San Mateo Daily Journal, The (CA). 2001.

14. Longcore, T., Rich, C., and Sullivan, L.M., “Critical Assessment of Claims Regarding Management of Feral Cats by Trap–Neuter–Return.” Conservation Biology. 2009. 23(4): p. 887–894.

15. ABC, Domestic Cat Predation on Birds and Other Wildlife. n.d., American Bird Conservancy: The Plains, VA. www.abcbirds.org/abcprograms/policy/cats/materials/predation.pdf

16. Winter, L. and Wallace, G.E., Impacts of Feral and Free-Ranging Cats on Bird Species of Conservation Concern, G.E. Wallace, Editor. 2006, American Bird Conservancy. www.abcbirds.org/newsandreports/NFWF.pdf

17. Ash, S.J. and Adams, C.E., “Public Preferences for Free-Ranging Domestic Cat (Felis catus) Management Options.” Wildlife Society Bulletin. 2003. 31(2): p. 334–339.

18. Hawkins, C.C., Grant, W.E., and Longnecker, M.T. Effect of house cats, being fed in parks, on California birds and rodents. in Proceedings Of The 4th International Symposium On Urban Wildlife Conservation. 2004. Tucson, AZ: University of Arizona. http://cals.arizona.edu/pubs/adjunct/snr0704/snr07042l.pdf

The Work Speaks—Part 4: Mean Spirited

In April, Conservation Biology published a comment authored by Christopher A. Lepczyk, Nico Dauphiné, David M. Bird, Sheila Conant, Robert J. Cooper, David C. Duffy, Pamela Jo Hatley, Peter P. Marra, Elizabeth Stone, and Stanley A. Temple. In it, the authors “applaud the recent essay by Longcore et al. (2009) in raising the awareness about trap-neuter-return (TNR) to the conservation community,” [1] and puzzle at the lack of TNR opposition among the larger scientific community:

“…it may be that conservation biologists and wildlife ecologists believe the issue of feral cats has already been studied enough and that the work speaks for itself, suggesting that no further research is needed.”

In fact, “the work”—taken as a whole—is neither as rigorous nor as conclusive as Lepczyk et al. suggest. And far too much of it is plagued by exaggeration, misrepresentations, errors, and obvious bias. In Part 3 of this series, I discussed the distinction between compensatory and additive predation. Here, I’ll focus on how feral cat/TNR researchers often misuse averages to characterize skewed distributions, and how that error overestimates the impact of free-roaming cats on wildlife.

Something’s Askew
When a data set is skewed, it is inappropriate to use the mean, or average, as a measure of central tendency. The mean should be used only when the data set can be considered normal—the familiar bell curve. As Woods et al put it:

“the simple average number of animals brought home is not a useful measure of central tendency because of the skewed frequency distribution of the numbers of prey items brought home…” [2]

Studies of cat predation routinely reveal a positively skewed distribution; a few cats are responsible for many kills, while many of the cats kill few, if any, prey. So when researchers use the mean to calculate the total number of prey killed by cats in a particular area, they overestimate the cats’ impact.

How common is this? Very [see, for example, 3-9]. Of the many cat predation studies I’ve read, only a few [2, 10, 11] properly account for the skewed nature of this distribution. And others [12-17] often take these inflated figures at face value—as evidence of the impact cats have on wildlife. Published repeatedly, the erroneous estimates take on an undeserved legitimacy.

The proper method for handling skewed distributions involves data transformations, the details of which I won’t go into here. The important point is this: in the case of a positively skewed distribution, the back-transformed mean will always be less than the simple mean of the same data set.

Big Deal
Depending on the particular distribution, the difference between the simple mean and the back-transformed mean can be considerable. Let’s use the 2003 study by Woods et al. [2] to illustrate. In the case of mammals killed and returned home by pet cats, the back-transformed mean was 28.3% less than the simple mean. Or, put another way, the simple mean would have overestimated the number of mammals killed by 39.5%. Similarly, when all prey items were totaled (as depicted in the illustration above), the simple mean would have overestimated the total number off all prey (mammals, birds, herpetofauna, and “others”) by 46.9%.

On the other hand, the figures for birds appear to break the rule mentioned above. In this case, the back-transformed mean (4.1) is actually a bit higher than the simple mean (4.0). How can this be? In order to log-transform the data set, Woods et al. had to first eliminate all the instances where cats returned home no prey—you can’t take the logarithm of 0. So, they were actually working with two data sets. Now, the second data set—which includes only those cats that returned at least one prey item—is also highly positively skewed. As a point of reference, its simple mean was approximately 5.6 birds/cat, which, compared to the back-transformed mean, is an overestimation of 37.5%.

By now, it should be apparent that log-transformed means have another important advantage over simple means: because you have to eliminate those zeros from the data set, you are forced to focus only on the cats that returned prey home—which, of course, is the whole point of such studies! And in the case of this study, Woods et al. found that 20–30% of cats brought home either no birds or no mammals. And 8.6% of the cats brought home no prey at all over the course of the study.

Transforming a data set (and then back-transforming its mean) is simpler than it sounds, but Barratt offers a useful alternative, rule-of-thumb method (one echoed by Fitzgerald and Turner [18]):

“…median numbers of prey estimated or observed to be caught per year are approximately half the mean values, and are a better representation of the average predation by house cats based on these data.” [10]

So, whereas Dauphiné and Cooper (and others) suggest increasing such estimates by factors of two and three (“predation rates measured through prey returns may represent one half to less than one third of what pet cats actually kill…” [14]), they should, in fact, be reducing them by half.

Cat Ownership
There are other instances in which simple averages are used to describe similarly skewed distributions—with similar results. That is, they overestimate a particular characteristic—and not in the cats’ favor.

Cat ownership, for example, is not a normal distribution. Many people own one or two cats; a few people own many cats. This is precisely what Lepczyk et al. found in their 2003 study:

“The total number of free-ranging cats across all landscapes was 656, ranging from 1 to 30 per landowner…” [6]

In fact, about 113 (I’m estimating from the histogram printed in the report) of those landowners owned just one cat apiece. About 70 of them owned two cats. Only one—maybe two—owned 30 cats. And yet, Lepczyk et al. calculate an average of 2.59 cats/landowner (i.e., 656 cats/253 landowners who allow their cats outdoors), thereby substantially overestimating cat ownership—and, in turn, predation rates (which calculations are based upon the average number of cats/landowner).

Lepczyk et al. are not the only ones to make this mistake; several other researchers have done the same. [4, 5, 7-9]

Outdoor Access
The amount of time cats spend outdoors is also highly positively skewed, as is apparent from the 2003 survey conducted by Clancy, Moore, and Bertone. [19] Their work showed that nearly half of the cats with outdoor access were outside for two or fewer hours a day. And 29% were outdoors for less than an hour each day.

Among those researchers to overlook the skewed nature of this distribution are Kays and DeWan, who calculate an average of 8.35 hours/day. This greatly overestimates potential predation, and leads them to conclude—erroneously—that the actual number of prey killed by cats was “3.3 times greater than the rate estimated from prey brought home,” [9] as was discussed previously.

Compound Errors
Clearly, these errors are substantial—in some cases, doubling the apparent impact of cats on wildlife. Of course the errors are even more significant when one inflated figure is multiplied by another—as when Lepczyk et al. [6] multiply the average number of prey items returned by the average number of outdoor cats per owner. The resulting predation figures may well be four times greater than they should be! (Actually, there are additional problems with the authors’ predation estimates, which I’ll address in a future post).

*     *     *

The fact that such a fundamental mistake—one a student couldn’t get away with in a basic statistics course—is made so often is shocking. The fact that such errors slip past journal reviewers is inexcusable.

References
1. Lepczyk, C.A., et al., “What Conservation Biologists Can Do to Counter Trap-Neuter-Return: Response to Longcore et al.” Conservation Biology. 2010. 24(2): p. 627-629.

2. Woods, M., McDonald, R.A., and Harris, S., “Predation of wildlife by domestic cats Felis catus in Great Britain.” Mammal Review. 2003. 33(2): p. 174-188.

3. Coleman, J.S. and Temple, S.A., On the Prowl, in Wisconsin Natural Resources. 1996, Wisconsin Department of Natural Resources: Madison, WI. p. 4–8. http://dnr.wi.gov/wnrmag/html/stories/1996/dec96/cats.htm

4. Baker, P.J., et al., “Impact of predation by domestic cats Felis catus in an urban area.” Mammal Review. 2005. 35(3/4): p. 302-312.

5. Baker, P.J., et al., “Cats about town: is predation by free-ranging pet cats Felis catus likely to affect urban bird populations? Ibis. 2008. 150: p. 86-99.

6. Lepczyk, C.A., Mertig, A.G., and Liu, J., “Landowners and cat predation across rural-to-urban landscapes.” Biological Conservation. 2003. 115(2): p. 191-201.

7. Crooks, K.R., et al., “Exploratory Use of Track and Camera Surveys of Mammalian Carnivores in the Peloncillo and Chiricahua Mountains of Southeastern Arizona.” The Southwestern Naturalist. 2009. 53(4): p. 510-517.

8. van Heezik, Y., et al., “Do domestic cats impose an unsustainable harvest on urban bird populations? Biological Conservation. 143(1): p. 121-130.

9. Kays, R.W. and DeWan, A.A., “Ecological impact of inside/outside house cats around a suburban nature preserve.” Animal Conservation. 2004. 7(3): p. 273-283.

10. Barratt, D.G., “Predation by house cats, Felis catus (L.), in Canberra, Australia. II. Factors affecting the amount of prey caught and estimates of the impact on wildlife.” Wildlife Research. 1998. 25(5): p. 475–487.

11. Barratt, D.G., “Predation by House Cats, Felis catus (L.), in Canberra, Australia. I. Prey Composition and Preference.” Wildlife Research. 1997. 24(3): p. 263–277.

12. May, R.M., “Control of feline delinquency.” Nature. 1988. 332(March): p. 392-393.

13. Jessup, D.A., “The welfare of feral cats and wildlife.” Journal of the American Veterinary Medical Association. 2004. 225(9): p. 1377-1383.

14. Dauphiné, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2010. p. 205–219

15. Longcore, T., Rich, C., and Sullivan, L.M., “Critical Assessment of Claims Regarding Management of Feral Cats by Trap–Neuter–Return.” Conservation Biology. 2009. 23(4): p. 887–894.

16. Winter, L., “Trap-neuter-release programs: the reality and the impacts.” Journal of the American Veterinary Medical Association. 2004. 225(9): p. 1369-1376.

17. Clarke, A.L. and Pacin, T., “Domestic cat “colonies” in natural areas: a growing species threat.” Natural Areas Journal. 2002. 22: p. 154–159.

18. Fitzgerald, B.M. and Turner, D.C., Hunting Behaviour of domestic cats and their impact on prey populations, in The Domestic Cat: The biology of its behaviour, D.C. Turner and P.P.G. Bateson, Editors. 2000, Cambridge University Press: Cambridge, U.K.; New York. p. 151–175.

19. Clancy, E.A., Moore, A.S., and Bertone, E.R., “Evaluation of cat and owner characteristics and their relationships to outdoor access of owned cats.” Journal of the American Veterinary Medical Association. 2003. 222(11): p. 1541-1545.

The Work Speaks—Part 1: Lost in Translation

In April, Conservation Biology published a comment authored by Christopher A. Lepczyk, Nico Dauphiné, David M. Bird, Sheila Conant, Robert J. Cooper, David C. Duffy, Pamela Jo Hatley, Peter P. Marra, Elizabeth Stone, and Stanley A. Temple. In it, the authors “applaud the recent essay by Longcore et al. (2009) in raising the awareness about trap-neuter-return (TNR) to the conservation community,” [1] and puzzle at the lack of TNR opposition among the larger scientific community:

“…it may be that conservation biologists and wildlife ecologists believe the issue of feral cats has already been studied enough and that the work speaks for itself, suggesting that no further research is needed.”

In fact, “the work”—taken as a whole—is neither as rigorous nor as conclusive as Lepczyk et al. suggest. And far too much of it is plagued by exaggerations, misrepresentations, errors, and obvious bias. For the next few posts, I’m going to present a sampling of its more serious flaws, beginning with how some researchers “reinterpret” work of others to suit their own purposes.

Tell It Like It Is
Studies of cat predation frequently cite the work of William G. George, who, in 1974, published a paper documenting his meticulous observations of the hunting behavior of three cats on his southern Illinois farm. “The results,” wrote George, “established a basis for examining the possibility that cat predation may result in depleted winter populations of microtine rodents and other prey of Red-tailed Hawks, Marsh Hawks, and American Kestrels.” [2]

Thirty years later, David A. Jessup interpreted things rather differently, giving George’s work an additional—and unwarranted—degree of certainty. Gone are the doubts that George expressed—first, regarding the impact of cat predation on rodent and other prey populations; second, regarding the relationship between these populations and the raptors that feed on them. For Jessup—who offers no additional evidence—it’s all very straightforward: “Feral cats also indirectly kill native predators by removing their food base.” [3]

More recently, Guttilla and Stapp seem to prefer Jessup’s take: “Human-subsidized cats… can spill over into less densely populated wildland areas where they reduce prey for native predators (George 1974).” [4]

If any additional work has been done on the subject (surely there are more cats in the area these days; how are the voles and raptors faring?), it seems to have gone unnoticed. Instead, Jessup, Guttilla, and Stapp (and others, too, no doubt) have simply rewritten George’s conclusion to suit their own purposes. Perhaps their version makes for a better story, but it’s rather poor science.

Credit Where Little/None Is Due
When the Lancet recently retracted a 1998 paper linking vaccinations to autism in children—“research” that sparked the ongoing backlash against vaccinations—it was headline news. The move prompted this criticism from one member of the British Parliament: “The Lancet article should never have been published, and its peer review system failed. The article should now be expunged from the academic record…”

At the risk of drawing too many parallels between the two papers, I think the same can be said for Coleman and Temple’s infamous “Wisconsin Study.” (On the other hand, it does serve a useful purpose as a red flag.) Actually, as Goldstein et al. point out, Coleman and Temple’s paper was never peer-reviewed (not necessarily a deal-breaker in my book, but such publications do warrant additional scrutiny), but achieved its mythical status by being cited ad nauseam in peer-reviewed journals, as well as the mainstream media.

Does anybody actually believe the numbers suggested by Coleman and Temple? Stanley Temple (one of the co-authors of the recent anti-feral cat/TNR comment in Conservation Biology) himself admitted their published figures “aren’t actual data; that was just our projection to show how bad it might be.” [5]

I don’t think Longcore et al. [6] or the editors at Conservation Biology put much stock in the Wisconsin Study—so why continue to publish “projections” that have been so thoroughly discredited? Because doing so strengthens their case, at least among those who don’t know any better—especially people outside the scientific community, including many journalists, policy makers, judges, and the general public.

In their recent comment, Lepczyk et al. suggest that conservation biologists and wildlife ecologists “look to the evolutionary biology community” [1] for an example of how to influence policy:

“When local policies or regulations are put forth that promote the teaching of creationism or intelligent design, the evolutionary biologists have responded in force from across the nation and world.” [1]

Let’s set aside for the moment all the baggage associated with their analogy. My question is this: Is the evolutionary biology community still publishing bogus “projections” from 13 years ago? I doubt it.

Check Your Premises
In their recent paper (available for download via the American Bird Conservancy (ABC) website), Dauphiné and Cooper arrive at their absurd figure of “117–157 million free-ranging cats in the United States,” [7] in part, by way of Jessup’s “estimated 60 to 100 million feral and abandoned cats in the United States.” [3]

So where does Jessup’s figure come from? We have no idea—there’s no citation. And Jessup is no authority on the subject—having conducted no studies or reviews of studies that quantify the feral cat population. What’s more, his “estimation” is among the highest figures published. Yet this is the shaky foundation upon which Dauphiné and Cooper attempt to build their subsequent argument.

The authors then add to the (dubious) number of feral cats the proportion of pet cats allowed outdoors. They refer to a 2004 paper by Linda Winter, director of ABC’s Cats Indoors! campaign, in which it was reported, “A 1997 nationwide random telephone survey indicated that 66% of cat owners let their cats outdoors some or all of the time.” [8]

That’s an interesting way to put it—Winter makes it sound like two-thirds of pet cats are essentially outdoor cats. But the surveycommissioned by ABC!—actually indicates that “35% keep their cats indoors all of the time” and “31% keep them indoors mostly with some outside access.” [9] The difference in wording is subtle, and hampered by imprecision—it all comes down to the meaning of some.

Winter’s 2004 paper implies that there are twice as many outdoor pet cats as was indicated in the original survey—an interpretation Dauphiné and Cooper seem to embrace. Had they looked further—and to a less biased source—they might have been able to get a better handle on the degree of outdoor access. For example: a 2003 survey conducted by Clancy, Moore, and Bertone [10] revealing that nearly half of the cats with outdoor access were outside for two or fewer hours a day. And 29% were outdoors for less than an hour each day.

Do these “part-timers” have the same impact on wildlife as feral cats? Dauphiné and Cooper would have us believe they do.

[Note: For a closer look at the flaws in Dauphiné and Cooper’s paper, download “One Billion Birds,” by Laurie D. Goldstein.]

The lesson? Credible research begins with a solid foundation; a weak foundation—one plagued with unsubstantiated claims—on the other hand, leads to pseudoscience.

Or worse. ABC’s Senior Policy Advisor, Steve Holmer, cited Dauphiné and Cooper’s bogus numbers when he spoke to the Los Angeles Times about his organization’s involvement with the legal battle against TNR. It’s like the Wisconsin Study all over again.

When All Else Fails, Look It Up
Though this would seem to be utterly obvious, it apparently bears repeating: Don’t cite work you haven’t actually read.

Isn’t this emphasized in all graduate (indeed, undergraduate, too) programs? What grad student isn’t, at one time or another, tempted to take the easy way out—ride the coattails of somebody else who’s (presumably) done the real work? In addition to the ethical implications, such shortcuts tend to invite more immediate troubles, too. Again, George’s work (described above) provides an excellent case study. Below are some examples of how his work has been referenced in the cat predation literature:

“It is very unlikely that cats bring home all of the prey that they capture. What proportion they bring home has been little studied. George (1974) on a farm in Illinois USA found that three house cats, all adequately fed, brought home about 50% of the prey that they killed.” [11]

“George found that about 50% of prey were indeed brought home, with the other 50% being eaten, scavenged by other animals or simply not found.” [12]

“These approximations are probably underestimates, assuming that cats do not bring back all the prey that they kill.” [13]

Trouble is, George never said these things; what he said was:

“… the cats never ate or deposited prey where caught but instead carried it into a ‘delivery area,’ consisting of the house and lawn. The exclusive use of this delivery area was verified in 18 to 70 mammal captures per cat, as witnessed between early 1967 and 1971.” [2]

In 2000, Fitzgerald and Turner pointed out the fact that George’s work was being misrepresented, noting that the erroneous 50% figure “has been reported widely, though it is unfounded.” [14] Nevertheless, the myth persists—even in 2010.

“In Illinois, George (1974) found that only about half of animals killed by cats were provided to their owners, and in upstate New York, Kays and DeWan (2004) found that observed cat predation rates were 3.3 times higher than predation rates measured through prey returns to owners. Thus, predation rates measured through prey returns may represent one half to less than one third of what pet cats actually kill…” [7]

As Dauphiné and Cooper demonstrate, the “reinterpreted” version of George’s work makes for a very convenient multiplier—suddenly, every kill reported is doubled (or tripled, if Kays and DeWan are to be believed—and they’re not, but that’s a topic for another post). Never mind the fact that it has no basis in actual fact.

Getting a copy of George’s study isn’t difficult, especially with the inter-library loan services available today. To reference it—to use George’s work so that your own appears more credible—without ever having actually read it, is simply inexcusable. But citing it blindly suggests more than laziness—it points to a certain coziness that has no place in scientific discourse. Too much Kool-Aid drinking, and not enough honest research.

*     *     *

Scientists can (and do) look at identical results and come to very different conclusions. But misinterpreting, misrepresenting, or dismissing the conclusions of others, is something else altogether. As the above examples (and there are many, many more!) illustrate, this happens far too often in the feral cat/TNR literature. And if we can’t believe what researchers are saying about the work of others, why would we believe what they say about their own work?

Next, I’ll focus on some of the major flaws in the feral cat/TNR literature—beginning with small sample sizes

References
1. Lepczyk, C.A., et al., “What Conservation Biologists Can Do to Counter Trap-Neuter-Return: Response to Longcore et al.” Conservation Biology. 2010. 24(2): p. 627-629.

2. George, W., “Domestic cats as predators and factors in winter shortages of raptor prey.” The Wilson Bulletin. 1974. 86(4): p. 384–396.

3. Jessup, D.A., “The welfare of feral cats and wildlife.” Journal of the American Veterinary Medical Association. 2004. 225(9): p. 1377-1383.

4. Guttilla, D.A. and Stapp, P., “Effects of sterilization on movements of feral cats at a wildland-urban interface.” Journal of Mammalogy. 2010. 91(2): p. 482-489.

5. Elliott, J., The Accused, in The Sonoma County Independent. 1994. p. 1, 10

6. Longcore, T., Rich, C., and Sullivan, L.M., “Critical Assessment of Claims Regarding Management of Feral Cats by Trap–Neuter–Return.” Conservation Biology. 2009. 23(4): p. 887–894.

7. Dauphiné, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2010. p. 205–219

8. Winter, L., “Trap-neuter-release programs: the reality and the impacts.” Journal of the American Veterinary Medical Association. 2004. 225(9): p. 1369-1376.

9. ABC, Human Attitudes and Behavior Regarding Cats. 1997, American Bird Conservancy: Washington, DC. http://www.abcbirds.org/abcprograms/policy/cats/materials/attitude.pdf

10. Clancy, E.A., Moore, A.S., and Bertone, E.R., “Evaluation of cat and owner characteristics and their relationships to outdoor access of owned cats.” Journal of the American Veterinary Medical Association. 2003. 222(11): p. 1541-1545.

11. Churcher, P.B. and Lawton, J.H., “Predation by domestic cats in an English village.” Journal of Zoology. 1987. 212(3): p. 439-455.

12. May, R.M., “Control of feline delinquency.” Nature. 1988. 332(March): p. 392-393.

13. Crooks, K.R. and Soule, M.E., “Mesopredator release and avifaunal extinctions in a fragmented system.” Nature. 1999. 400(6744): p. 563.

14. Fitzgerald, B.M. and Turner, D.C., Hunting Behaviour of domestic cats and their impact on prey populations, in The Domestic Cat: The biology of its behaviour, D.C. Turner and P.P.G. Bateson, Editors. 2000, Cambridge University Press: Cambridge, U.K.; New York. p. 151–175.