Collisions, Predation, and Bird Populations

Masts of the Rugby Radio Station transmitter, Warwickshire, England. Courtesy of Wikimedia Commons and Sreejithk2000.

Recent research suggests that collisions with buildings and communication towers have no significant effect on bird populations. These findings raise additional questions about the often-implied connection between predation by free-roaming cats and declining bird numbers.


According to the American Bird Conservancy, 300 million to 1 billion birds are killed each year in “collisions with glass on buildings, from skyscrapers to homes.” As many as 50 million more are killed annually by communication towers.

Yet, according to a study published last September in the open-access, online publication PLoS ONE, “this conspicuous source of mortality has had no discernible effect on long-term population dynamics among North American landbirds.” [1]

“At worst,” suggest authors Todd Arnold and Robert Zink, conservation biologists from the University of Minnesota, “collision mortality could be described as an added burden for populations already in decline for other reasons.” [1]

Which would seem to be, if not good news for the folks at ABC, then at least news. (Even solutions “that can greatly reduce avian collision mortality at manmade structures,” warn the researchers, “will not halt population declines among North American migratory birds.” [1])

So, why is there no mention of this study—published nearly six months ago—on the ABC website?

I suspect it will never appear there—or in any ABC publication. And they’re certainly not going to mention it to the media—too many awkward questions about contradictory assertions, resource allocation, and the like. After all, this is an organization that prides itself on using “the best available science” to shape policy.

(To be clear: Arnold and Zink are not opposed to “the deployment of simple design solutions that can greatly reduce avian collision mortality at manmade structures,” [1] despite the rather dire results of their analysis.)

The Study
To better understand potential population-level impacts, Arnold and Zink compared “long-term records of avian mortality from communication towers and urban buildings… with population estimates and trend data from the North American Breeding Bird Survey.” [1] The relative vulnerability of various species (188 in the case of communication towers, 147 for buildings) was quantified by comparing the proportion of birds killed in collisions with towers and/or buildings with their proportion in the overall bird population.

Species with very high collision mortalities relative to their abundance were dubbed “super colliders,” while species with very low instances of collisions relative to their numbers were dubbed “super avoiders.”

The spread between the two extremes is astonishing. Bay-breasted warblers, for example, were found to be 236 times more likely to collide with towers than would be predicted by chance alone (but are nevertheless considered a species of Least Concern). Horned larks, on the other hand, are 688 times more likely to avoid the same towers.

Fascinating work! What caught my eye, though, was the authors’ suggestion that their analysis technique would be appropriate for assessing “many poorly quantified conservation threats [including] house cat predation.” [1]

Future (Hypothetical) Study
Curious, I contacted Arnold, asking him how one would go about conducting such a study. Surely, obtaining an accurate count of mortalities due to predation is far more complicated than tallying mortalities due to man-made structures (itself, no trivial undertaking).

In fact, the greatest challenge, suggests Arnold, is not the data collection or subsequent analysis.

“In order to do the scientific study that you asked about, it’s necessary to approach it objectively, and I’d worry that anybody tackling this issue would be in one camp or the other, and the study really demands an impartial referee. A possibly better alternative would be to get members of both sides to agree in a mediated discussion what would constitute a valid study of the issue, and how such a study would be designed, implemented, and interpreted.”

Fair enough. Still, though: if implementation and interpretation pose particular challenges, the design of the study is actually fairly straightforward. “To apply the approach that we used for tower and building collisions,” Arnold says, “you would need to assemble a large data set on what species of birds are killed by cats.”

“It would probably take a large network of citizen scientists to accumulate a database on species composition of cat-killed wildlife; they would need to be people who had frequent and regular access to one or more cats—so, cat owners, cat monitors, and cat stewards who would agree to participate on a long-term basis. It would be important that sampling wasn’t driven by spectacular events (e.g., a cat owner ignores several non-descript House Sparrows that their cat brings home, and only submits information when a colorful Northern Cardinal gets killed). Conversely, you’d need to worry about people who might report only the boring and common things and fail to report when a rare or well-loved bird is killed because they are ashamed or fear backlash from the bird-loving public.”

Proper identification of each species would, of course, be critical. This, says Arnold, could be done using digital photos or by collecting remains (a method often employed in predation studies [2] and [3] and [4]).

“The study would have to continue until several thousand birds had been identified to species (Bob Zink and I worked with data sets that were a minimum of about 5,000 dead birds). From the mortality records, one would first identify the species that were most vulnerable to cats by comparing their proportion in the cat-kill data to their expected proportion based on population estimates. So, say for example, that juncos and American robins were 5.2 and 3.2 percent of the mortality records, but only 1.3 and 1.6 percent of the total bird population, then they’d be 4 and 2 times more vulnerable to cats than expected by chance. Other species would be less vulnerable than expected by chance. This part of the study would identify which species of birds were most vulnerable to predation by cats, and a priori I’d expect to see that ground-feeding birds like juncos and robins were more vulnerable, as well as urban- and suburban-adapted birds like robins, starlings, chickadees, etc.”

As Arnold and Zink point out in their paper, “total body counts reveal little about relative mortality risk for each species”—a fact often overlooked or ignored by those trying to link predation by cats to declining bird populations. And so, “the final—but critical—step” in our hypothetical study, says Arnold, “is to ask: Does this mortality factor matter do bird populations?

“It obviously matters to the individuals that were killed, but given that 40–50 percent of the fall bird population is probably not going to be alive one year later, the focus here has to be on long-term population dynamics. And so, the final step would involve correlating the measure of vulnerability to cat predation from the first step with long-term population trends for these same species. If one finds that cat predation rates are not correlated with bird population trends, then it’s time to stop vilifying cats for bird declines (with the important caveat that it might still be important for one or two endangered/threatened species). If one finds that cat predation rates are negatively correlated with bird population declines, then it suggests that cats might be an important limiting factor of birds populations (with the important caveat that it might be due to some other unmeasured factor that is also correlated with cat predation).”

What We Already Know
Unfortunately, I’m in no position to undertake the study Arnold describes. And, in any case, am (unapologetically) in “one camp or the other.” (That said, I’d jump at the chance to be part of the aforementioned “mediated discussion.”)

On the other hand, there’s already plenty of research suggesting that predation does not necessarily result in population-level impacts. In The Domestic Cat: The Biology of Its Behaviour, for example, Mike Fitzgerald and Dennis Turner thoroughly reviewed 61 predation studies, concluding rather unambiguously: “We consider that we do not have enough information yet to attempt to estimate on average how many birds a cat kills each year. And there are few, if any studies apart from island ones that actually demonstrate that cats have reduced bird populations.” [5]

Also: it’s well-known that predators—cats included—tend to prey on the young, the old, the weak and unhealthy. Indeed, at least two research studies have investigated this phenomenon in great detail. In one, researchers comparing the fat reserves of birds killed by cats to those of birds killed through non-predatory events (e.g., collisions with windows or cars) found that “mean fat scores evident in the cat-killed birds… were sufficiently low that these individuals were likely to have had poor long-term survival prospects.” [6]

In another study, researchers found that songbirds killed by cats tend to have smaller spleens than those killed through non-predatory events, leading them to conclude that “avian prey often have a poor health status.” [7]

As the UK’s Royal Society for the Protection of Birds notes: “It is likely that most of the birds killed by cats would have died anyway from other causes before the next breeding season, so cats are unlikely to have a major impact on populations.” [8]

(Frank Gill makes this very point in the third edition of Ornithology: “With some conspicuous exceptions… predators don’t limit or regulate the bird populations on which they prey. Instead, they take weak, sick, and young birds, many of which are part of the surplus that exceeds locally limiting food supplies.” [9] When it comes to cats, however, Gill considers “managed feral cat colonies [to be] potentially a serious threat to local bird populations.”)

•     •     •

Granted, the studies referenced above are no substitute for the one Arnold describes. And I don’t expect ABC to “stop vilifying cats for declining bird populations” anytime soon.

Nevertheless, Arnold and Zink’s findings ought to make it more difficult for ABC (or any other organization blaming cats for declining bird populations) to continue using cats as scapegoats. After all, even using the figures cited by ABC, it seems quite likely that collisions with buildings and communication towers are responsible for more bird deaths than are cats.* And the man-made structures are taking out healthy individuals.

Of course, as Arnold notes in his e-mail, bird species vulnerable to man-made structures may not be vulnerable to predation by cats, and those vulnerable to predation by cats may not be vulnerable to collisions. Still, taken together, all of this research begs the question: If building- and tower-collisions aren’t having population-level impacts, how likely is it that free-roaming cats are?

Which is exactly what I asked Darin Schroeder, ABC’s Vice President of Conservation Advocacy, and Steve Holmer, their Director of the Bird Conservation Alliance. That was three weeks ago.

*According to The American Bird Conservancy’s Guide to Bird Conservation, “532 million birds [are] killed annually by outdoor cats.” [10] Though far less than the “one billion birds” sometimes cited by TNR opponents, [11] ABC’s “estimate” is based on some dubious assumptions.

Thanks to my friends at Alley Cat Allies for bringing Arnold and Zink’s paper to my attention.

Literature Cited
1. Arnold, T.W. and Zink, R.M., “Collision Mortality Has No Discernible Effect on Population Trends of North American Birds.” PLoS ONE. 2011. 6(9): p. e24708. http://dx.doi.org/10.1371%2Fjournal.pone.0024708

2. Churcher, P.B. and Lawton, J.H., “Predation by domestic cats in an English village.” Journal of Zoology. 1987. 212(3): p. 439-455. http://dx.doi.org/10.1111/j.1469-7998.1987.tb02915.x

3. Woods, M., McDonald, R.A., and Harris, S., “Predation of wildlife by domestic cats Felis catus in Great Britain.” Mammal Review. 2003. 33(2): p. 174-188. http://www.mammal.org.uk/index.php?option=com_content&view=article&id=256:domestic-cat-predation-on-wildlife&catid=51:survey-reports&Itemid=289

4. Barratt, D.G., “Predation by House Cats, Felis catus (L.), in Canberra, Australia. I. Prey Composition and Preference.” Wildlife Research. 1997. 24(3): p. 263–277.

5. Fitzgerald, B.M. and Turner, D.C., Hunting Behaviour of domestic cats and their impact on prey populations, in The Domestic Cat: The biology of its behaviour, D.C. Turner and P.P.G. Bateson, Editors. 2000, Cambridge University Press: Cambridge, U.K.; New York. p. 151–175.

6. Baker, P.J., et al., “Cats about town: Is predation by free-ranging pet cats Felis catus likely to affect urban bird populations? Ibis. 2008. 150: p. 86–99. http://www.ingentaconnect.com/content/bsc/ibi/2008/00000150/A00101s1/art00008

7. Møller, A.P. and Erritzøe, J., “Predation against birds with low immunocompetence.” Oecologia. 2000. 122(4): p. 500–504. http://www.springerlink.com/content/ghnny9mcv016ljd8/

8.  n.a. (2011) Are cats causing bird declines? http://www.rspb.org.uk/advice/gardening/unwantedvisitors/cats/birddeclines.aspx Accessed October 26, 2011.

9. Gill, F.B., Ornithology. 3rd ed. 2007, New York: W.H. Freeman. xxvi, 758 p.

10. Lebbin, D.J., Parr, M.J., and Fenwick, G.H., The American Bird Conservancy Guide to Bird Conservation. 2010, London: University of Chicago Press.

11. Dauphine, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2009. p. 205–219. http://www.pwrc.usgs.gov/pif/pubs/McAllenProc/articles/PIF09_Anthropogenic%20Impacts/Dauphine_1_PIF09.pdf

Revisiting “Reassessment”

“Reassessment: A Closer Look at ‘Critical Assessment of Claims Regarding Management of Feral Cats by Trap-Neuter-Return’” has been revised and expanded!

Image of "Reassessment" Document

This paper, a brief review and critique of the essay “Critical Assessment of Claims Regarding Management of Feral Cats by Trap-Neuter-Return” by Travis Longcore, Catherine Rich, and Lauren M. Sullivan, now includes sections on Toxoplasma gondii, the mesopredator release phenomenon, and more. In addition, links and downloadable PDFs have been added to the list of references.

Over the past year, “Critical Assessment” has gotten a great deal of traction among TNR opponents, despite its glaring omissions, blatant misrepresenta­tions, and obvious bias. “Reassessment”—intended to be a resource for a broad audience, including, wildlife and animal control professionals, policymakers, and the general public—shines a bright spotlight on these shortcomings, thereby bringing the key issues back into focus.

Act Locally
Politics is, as they say, local. This is certainly true of the debate surrounding TNR. Policies endorsing TNR, the feeding of feral cats, etc. typically begin with “Town Hall” meetings, or even meetings of neighborhood associations. “Reassessment” provides interested parties with a rigorous, science-based counter-argument to those using “Critical Assessment” as a weapon against feral cats/TNR.

So, once you’ve had a look for yourself, please share generously! Together, we can—in keeping with the mission of Vox Felina—improve the lives of feral cats through a more informed, conscientious discussion of feral cat issues in general, and TNR in particular.

Download PDF

On Invasion and Persuasion

Smithsonian magazine is, according to its website, “created for modern, well-rounded individuals with diverse interests” and “chronicles the arts, history, sciences and popular culture of the times.” Jess Righthand’s recent article, “The World’s Worst Invasive Mammals,” seems—despite its inclusion in the online edition’s “Science & Nature” section—better suited for the pop culture category.

Indeed, the story has more to do with sensationalism than science.

Feral Cat Population
Righthand’s claim that “there are an estimated 60 million feral cats in the United States alone” is conservative compared to some other estimates. David Jessup, for example, suggested in 2004 that there were 60–100 million [1], while, more recently, The American Bird Conservancy Guide to Bird Conservation puts the figure at 60–120 million [2] (neither cites a source).

Still, Merritt Clifton of Animal People, an independent newspaper dedicated to animal protection issues, makes a compelling argument that the population of feral cats in the U.S. is much smaller than is often reported, and may very well be on the decline. [3]

Clifton’s estimates are derived not from surveys of homeowners feeding stray and feral cats, but from “information about the typical numbers of cats found in common habitat types, gleaned from a national survey of cat rescuers… cross-compared with animal shelter intake data.” [4] In 2003, Clifton suggested that “the winter feral cat population may now be as low as 13 million and the summer peak is probably no more than 24 million.” [4]

Predation on Birds
Righthand puts the figure for annual bird deaths attributed to feral cats at “around 480 million.” Nowhere near the “one billion birds” proposed by Nico Dauphine and Robert Cooper, [5] of course, but more than enough to get the attention of Smithsonian readers.

But, as I’ve pointed out repeatedly, even high rates of predation do not equate to population declines (though, clearly, it’s easy to suggest as much). Many researchers have disputed the kind of broad, overreaching claims to which Righthand alludes. Biologist C.J. Mead, for example, reviewing the deaths of “ringed” (banded) birds reported by the British public, suggests that cats may be responsible for 6.2–31.3 percent of bird deaths. “Overall,” writes Mead, “it is clear that cat predation is a significant cause of death for most of the species examined.” Nevertheless, Mead concludes:

“there is no clear evidence of cats threatening to harm the overall population level of any particular species… Indeed, cats have been kept as pets for many years and hundreds of generations of birds breeding in suburban and rural areas have had to contend with their predatory intentions.” [6]

Mike Fitzgerald and Dennis Turner come to essentially the same conclusion: “We consider that we do not have enough information yet to attempt to estimate on average how many birds a cat kills each year. And there are few, if any studies apart from island ones that actually demonstrate that cats have reduced bird populations.” [7]

Then, too, there’s the critical distinction between compensatory and additive predation—again, a point I’ve made numerous times. Two very interesting studies have generated compelling evidence that birds killed by cats are, on average, significantly less healthy than those killed through non-predatory events (e.g., collisions with buildings). [8, 9] In other words, these birds probably weren’t going to live long enough to contribute to the overall population numbers; predation was compensatory rather than additive.

Public Health Threats
“When house cats are allowed free range outdoors by their owners,” argues Righthand, “or simply don’t have owners, they not only wreak havoc as opportunistic hunters, they can also spread disease. In addition to carrying rabies, 62 to 82 percent of cats in a recent study tested positive for toxoplasmosis.” Here, Righthand seems to be cribbing off of Hildreth, Vantassel, and Hygnstrom, of “Feral Cats and Their Management” fame—hardly a reputable source.

Rabies
Regarding rabies—a topic I’ll save for future posts—I think it’s important to put this into perspective. I happen to have data from Florida handy, and according to that state’s Department of Health, approximately 22,000 Florida residents have died of the flu or pneumonia since 2006 (actually, that figure accounts for only 24 of Florida’s 67 counties, so the total is surely much higher).

By way of comparison: from 2005 through mid-May of this year, there were 11 reported cases of rabies in humans across the entire country (though, I believe there were a handful of reported cases this summer as well).

In terms of public health, then, I think we’re all better off focusing on frequent hand washing, sneezing into our sleeves, and the like—as opposed to, say, exterminating this country’s most popular companion animal by the millions.

Toxoplasma gondii (I)
While it’s true that cats are the definitive host of Toxoplasma gondii, it’s important to note that “wild game can be a source of T. gondii infection in humans, cats, and other carnivores. Serologic data show that a significant number of feral pigs, bears, and cervids are exposed to T. gondii. [10]

“Humans,” write Elmore et al., “usually become infected through ingestion of oocyst-contaminated soil and water, tissue cysts in undercooked meat, or congenitally. Because of their fastidious nature, the passing of non-infective oocysts, and the short duration of oocyst shedding, direct contact with cats is not thought to be a primary risk for human infection.” [11]

But to Righthand’s point: the rate of cats testing positive—or seroprevalence—is, in any event, not a useful measure of their ability to infect other animals or people.

According to Dubey and Jones, “most cats seroconvert after they have shed oocysts. Thus, it is a reasonable assumption that most seropositive cats have already shed oocysts.” [12] “Testing positive,” in this case, is nothing more than the detection of antibodies resulting from seroconversion (the same process, by the way, that takes place in humans after receiving a flu shot).

So, what exactly is Righthand’s point? Did she simply not do her homework here, or is the idea to portray these cats as a threat far, far beyond what the scientific evidence supports? Both, I suspect.

Toxoplasma gondii (II)
T. gondii
, Righthand continues, “has been shown to cause neurological damage to sea otters and other marine mammals that are exposed when heavy rainfall washes infected cat feces into the water.” Again, this is terrain I’ve covered previously. (Righthand, it seems, could do herself—and Smithsonian readers—a favor by subscribing to Vox Felina!)

Yes, T. gondii has been linked to the illness and death of marine life, primarily sea otters [13], prompting investigation into the possible role of free-roaming (both owned and feral) cats. [14, 15] It’s generally thought that oocysts (the mature, infective form of the parasite) are transferred from soil contaminated with infected feces to coastal waterways by way of freshwater run-off. [15]

However, one study found that 36 of 50 sea otters from coastal California were infected with the Type X strain of T. gondii [16], a type linked to wild felids (mountain lions and a bobcat, in this case), but not to domestic cats. [15] A recently published study from Germany seems to corroborate these findings. Herrmann et al. analyzed 18,259 fecal samples (all from pet cats) for T. gondii and found no Type X strain. (It’s interesting to note, too, that only 0.25% of the samples tested positive for T. gondii). [17]

Once again, we’re back to the question: What is Righthand trying to accomplish here?

Population Impacts
“Cats have,” writes Righthand, “also hurt populations of birds, reptiles and other creatures. The black stilt of New Zealand (a seabird), the Okinawa woodpecker and the Cayman Island ground iguana are just a few of the dozens of endangered species at risk due to the proliferation of feral cats.”

At the risk of pointing out the obvious, endangered species are—by definition—at risk due to the proliferation of all sorts of threats. That’s how they became endangered in the first place. To suggest, as Righthand does, that cats are the sole threat these animals face is both misleading and irresponsible.

Righthand (taking a cue, perhaps, from the authors of The ABC Guide?) also makes the common mistake of using island impacts (which are, themselves, more complex than often acknowledged) to imply impacts elsewhere (better yet: everywhere). Readers, it seems, are on their own in terms of doing any research on the topic.

Mission Failure
How much of the blame we can put on Righthand, I don’t know. According to Smithsonian’s website, she’s an intern with the magazine. Had the editors wanted a more thoroughly researched article, they could have demanded one. (This, some readers will recall, is not the first time I’ve been disappointed with the Smithsonian’s lack of rigor.)

According to its website, the mission of the Smithsonian is straightforward but ambitious: “the increase and diffusion of knowledge.” Righthand’s article—misleading at best—falls well short. It seems she’s still struggling with how to best express the organization’s proclaimed values—in this case, going overboard on the creativity at the expense of excellence and integrity.

Literature Cited
1. Jessup, D.A., “The welfare of feral cats and wildlife.” Journal of the American Veterinary Medical Association. 2004. 225(9): p. 1377-1383. http://avmajournals.avma.org/doi/abs/10.2460/javma.2004.225.1377

2. Lebbin, D.J., Parr, M.J., and Fenwick, G.H., The American Bird Conservancy Guide to Bird Conservation. 2010, London: University of Chicago Press.

3. Clifton, M. (2003) Roadkills of cats fall 90% in 10 years—are feral cats on their way out? http://www.animalpeoplenews.org/03/11/roadkills1103.html Accessed May 23, 2010.

4. Clifton, M. Where cats belong—and where they don’t. Animal People 2003 [cited 2009 December 24].  http://www.animalpeoplenews.org/03/6/wherecatsBelong6.03.html.

5. Dauphiné, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2009. p. 205–219. www.pwrc.usgs.gov/pif/pubs/McAllenProc/articles/PIF09_Anthropogenic%20Impacts/Dauphine_1_PIF09.pdf

6. Mead, C.J., “Ringed birds killed by cats.” Mammal Review. 1982. 12(4): p. 183-186. http://dx.doi.org/10.1111/j.1365-2907.1982.tb00014.x

7. Fitzgerald, B.M. and Turner, D.C., Hunting Behaviour of domestic cats and their impact on prey populations, in The Domestic Cat: The biology of its behaviour, D.C. Turner and P.P.G. Bateson, Editors. 2000, Cambridge University Press: Cambridge, U.K.; New York. p. 151–175.

8. Baker, P.J., et al., “Cats about town: is predation by free-ranging pet cats Felis catus likely to affect urban bird populations? Ibis. 2008. 150: p. 86-99. http://dx.doi.org/10.1111/j.1474-919X.2008.00836.x

9. Møller, A.P. and Erritzøe, J., “Predation against birds with low immunocompetence.” Oecologia. 2000. 122(4): p. 500-504. http://www.springerlink.com/content/ghnny9mcv016ljd8/

10. Hill, D.E., Chirukandoth, S., and Dubey, J.P., “Biology and epidemiology of Toxoplasma gondii in man and animals.” Animal Health Research Reviews. 2005. 6(01): p. 41-61. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=775956&fulltextType=RA&fileId=S1466252305000034

11. Elmore, S.A., et al., “Toxoplasma gondii: epidemiology, feline clinical aspects, and prevention.” Trends in Parasitology. 26(4): p. 190-196. http://www.sciencedirect.com/science/article/B6W7G-4YHFWNM-1/2/2a468a936eb06649fde0463deae4e92f

12. Dubey, J.P. and Jones, J.L., “Toxoplasma gondii infection in humans and animals in the United States.” International Journal for Parasitology. 2008. 38(11): p. 1257-1278. http://www.sciencedirect.com/science/article/B6T7F-4S85DPK-1/2/2a1f9e590e7c7ec35d1072e06b2fa99d

13. Jones, J.L. and Dubey, J.P., “Waterborne toxoplasmosis – Recent developments.” Experimental Parasitology. 124(1): p. 10-25. http://www.sciencedirect.com/science/article/B6WFH-4VXB8YT-2/2/8f9562f64497fe1a30513ba3f000c8dc

14. Dabritz, H.A., et al., “Outdoor fecal deposition by free-roaming cats and attitudes of cat owners and nonowners toward stray pets, wildlife, and water pollution.” Journal of the American Veterinary Medical Association. 2006. 229(1): p. 74-81. http://avmajournals.avma.org/doi/abs/10.2460/javma.229.1.74

15. Miller, M.A., et al., “Type X Toxoplasma gondii in a wild mussel and terrestrial carnivores from coastal California: New linkages between terrestrial mammals, runoff and toxoplasmosis of sea otters.” International Journal for Parasitology. 2008. 38(11): p. 1319-1328. http://www.sciencedirect.com/science/article/B6T7F-4RXJYTT-2/2/32d387fa3048882d7bd91083e7566117

16. Conrad, P.A., et al., “Transmission of Toxoplasma: Clues from the study of sea otters as sentinels of Toxoplasma gondii flow into the marine environment.” International Journal for Parasitology. 2005. 35(11-12): p. 1155-1168. http://www.sciencedirect.com/science/article/B6T7F-4GWC8KV-2/2/2845abdbb0fd82c37b952f18ce9d0a5f

17. Herrmann, D.C., et al., “Atypical Toxoplasma gondii genotypes identified in oocysts shed by cats in Germany.” International Journal for Parasitology. 2010. 40(3): p. 285–292. http://www.sciencedirect.com/science/article/B6T7F-4X1J771-2/2/dc32f5bba34a6cce28041d144acf1e7c

Inside Job

Results from the American Pet Products Association’s 2009­­–2010 National Pet Owners Survey suggest that cats in this country are spending more time indoors than ever before. Although the proportion of owners keeping their cats inside at night has remained relatively steady since 1998 (at approximately 66%), their has been a 14% increase in daytime confinement (from 56% to 64%) over the same period. [1]

Indoor&Outdoor Access-APPA

It must be noted that owners were asked where they usually kept their cat(s), thereby raising some doubts about the accuracy of their responses. (There are actually two issues here: first is the level of truthfulness—did owners, intentionally or not, provide accurate information? But there is also the obvious ambiguity surrounding the term usually.) Nevertheless, these results correspond reasonably well with those of two earlier surveys: one commissioned by the American Bird Conservancy (ABC) in 1997, [2] the other conducted by Clancy et al. in 2001 [3] (the only other surveys I’ve found that investigated this issue specifically).

The ABC’s study (in which 250 cat owners participated in a telephone survey) indicated that “35% keep their cats indoors all of the time,” while “31% keep them indoors mostly with some outside access.” [2]

The 2001 survey included 168 cat owners, each of whom was part of the Feline Health Study, conducted at the Foster Hospital for Small Animals, Cummings School of Veterinary Medicine, Tufts University. Sixty percent of these cats were “strictly indoor cats,” while 40% “had some level of outdoor access.” [3] Probing further, Clancy et al. discovered that nearly half of the cats with outdoor access were outside for two or fewer hours a day. And 29% of them were outdoors for less than an hour each day. [3]

Considering the differences in sampling (most notably the fact that participants in the 2001 survey were all clients of a veterinary hospital, whereas APPA survey results for 2000 indicate that 27% of cat owners did not visit the vet in the previous 12 months), and the inherent uncertainty surrounding the terms mostly, usually, and some, the results of these three surveys are remarkably similar.

Counting Cats
Such findings are critical for developing accurate estimates of the number of birds killed by cats (assuming a reasonable level of accuracy is achievable, given the complexity of the issue). Simply put, cats that don’t go outside can’t kill birds.

Recognizing this, some researchers have inflated their figures for cats allowed outdoors. [4–6]

Dauphiné and Cooper, [6] for instance, cite the APPA’s 2007–2008 survey when referring to the number of owned cats in the U.S., but either ignored or overlooked its findings about confinement: 63% of owners reported that they kept their cat(s) indoors during the day, 70% during the night. (It’s also possible that the authors consulted only the APPA’s online summary, which probably didn’t include this information.)

By contrast, Dauphiné and Cooper claim that 65% of pet cats “are free-ranging outdoor cats for at least some portion of the day,” [6] citing not the APPA survey, but Linda Winter’s 2004 paper, “Trap-neuter-release programs: the reality and the impacts” (which can be downloaded here). Indeed, Winter, the former director of the ABC’s Cats Indoors! campaign, had suggested as much—misrepresenting the findings of a study commissioned by her own organization:

“A 1997 nationwide random telephone survey indicated that 66% of cat owners let their cats outdoors some or all of the time.” [7]

Double the proportion of cats allowed outdoors, and—just like that—the number of birds killed by pet cats doubles too. (Dauphiné and Cooper actually go much further, employing some grossly inflated predation rates as well.)

Counting Birds
Of course, such estimates do not necessarily relate directly to population impacts. The predation may be largely compensatory, for example; and there are source-sink dynamics to be considered as well.

Nevertheless, researchers persist—more often, it seems, in pursuit of staggering, media-friendly figures than a better understanding of what’s actually going on (e.g., Dauphiné and Cooper’s bumper-sticker-worthy “one billion birds”). As a result, the scientific literature is plagued with some rather spectacular failures where predation numbers are concerned (e.g., The Wisconsin Study, Christopher Lepczyk’s dissertation, Carol Fiore’s thesis, etc.).

*     *     *

The surprising level of agreement among the three “outdoor access” studies provides researchers a rare opportunity to agree among themselves. Which, in turn, could move us closer to an honest debate of the larger issues—arguing about which action is most appropriate, for instance, rather than about whose numbers are most valid.

Despite how results of these surveys have been—as recently as last year—overlooked, ignored, and misrepresented, I remain cautiously optimistic. As Patronek has suggested, “predation of songbirds tends to be noticed because it takes place during the day.” [8] It’s time predation research received the same kind of visibility. Sunlight, after all, is said to be the best of disinfectants.

Note: There is a an amendment to this post here.

Literature Cited
1. APPA, 2009–2010 APPA National Pet Owners Survey. 2009, American Pet Products Association: Greenwich, CT.

2. ABC, Human Attitudes and Behavior Regarding Cats. 1997, American Bird Conservancy: Washington, DC. http://www.abcbirds.org/abcprograms/policy/cats/materials/attitudes.pdf

3. Clancy, E.A., Moore, A.S., and Bertone, E.R., “Evaluation of cat and owner characteristics and their relationships to outdoor access of owned cats.” Journal of the American Veterinary Medical Association. 2003. 222(11): p. 1541-1545.

4. Coleman, J.S. and Temple, S.A., On the Prowl, in Wisconsin Natural Resources. 1996, Wisconsin Department of Natural Resources: Madison, WI. p. 4–8. http://dnr.wi.gov/wnrmag/html/stories/1996/dec96/cats.htm

5. Lepczyk, C.A., Mertig, A.G., and Liu, J., “Landowners and cat predation across rural-to-urban landscapes.” Biological Conservation. 2003. 115(2): p. 191-201.

6. Dauphiné, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2009. p. 205–219.

7. Winter, L., “Trap-neuter-release programs: the reality and the impacts.” Journal of the American Veterinary Medical Association. 2004. 225(9): p. 1369-1376.

8. Patronek, G.J., “Free-roaming and feral cats—their impact on wildlife and human beings.” Journal of the American Veterinary Medical Association. 1998. 212(2): p. 218–226.

The Scat Hits the Fan

Relative to other studies of the domestic cat’s predatory habits, Carol Fiore’s 2000 thesis work is cited only occasionally in the literature. [1, 2] Indeed, it might easily go unnoticed were it not for its inclusion in the American Bird Conservancy’s brochure Domestic Cat Predation on Birds and Other Wildlife, and the fact that Fiore posted a summary of the study on her website—making much of its content available to anybody interested in the topic.

Fiore’s “primary goal,” she writes, “was to estimate the number of cats in Wichita, the average number of birds killed per cat and the total number of birds killed by cats each year.” [3] In fact, there was more to it than that.

Fiore was also trying to quantify the number of birds killed by cats without their owners’ knowledge, thereby addressing a concern frequently expressed by researchers whose predation estimates rely on prey records kept by cat owners. [4–7] In other words, how many birds were being killed by cats, really?

Fiore’s thesis project was an ambitious undertaking—perhaps too ambitious. Although her goal was admirable, her small sample size, flawed analytical methods, and various confounding factors cast considerable doubt over her findings. In addition, Fiore’s thesis document is peppered with evidence of bias. Indeed, she raises questions about her motivation for the project (and underlying assumptions) when, early on, she refers uncritically to the ABC’s Cats Indoors! campaign and the Wisconsin Study, and mischaracterizes the work of William George (see Note 1).

I’m afraid that, in the end, Fiore’s work does little to enhance our understanding of the domestic cat’s hunting behavior. In fact, because her conclusions tend to misrepresent the study’s findings, Fiore actually does more to perpetuate the mythology surrounding predation than the science.

The Study
Fiore’s research incorporated several methods, each intended to provide a key piece of the predation puzzle:

  1. Twenty-eight Wichita, Kansas cat owners were recruited and asked to record the number and, when possible, also the species, of birds killed by their 41 cats over the period of approximately one year.
  2. Some of these same participants were asked to collect scat samples, which were then analyzed for feathers. Detection of feathers was used to account for kills not reported by cat owners.
  3. The behavior of eight participating cats was observed with the help of radio collars.
  4. Cat density in the area was estimated by combining telephone survey results (regarding the proportion of area cats that received the rabies vaccine) with information from local veterinarians (regarding the yearly total of rabies vaccines administered to cats).
  5. Using Christmas Bird Count data, the density of Northern Cardinals in the Wichita area was estimated.
  6. The impact of free-roaming cats on the population of cardinals was then estimated by combining findings from each of the investigations described above (with the exception of the radio collar monitoring).
  7. A second telephone survey was conducted, this time to learn about residents’ attitudes concerning possible cat regulations (e.g., leash laws, licensing, etc.).

Birds Brought Home by Cats
Twenty-nine (71%) of the cats were reported to have killed birds during the study period, while 12 (29%) were credited with no kills. (These figures would later be adjusted based on the results of the scat analysis, as described below.) However, multi-cat households posed a particular problem. “For owners with more than one cat,” writes Fiore, “kills were alternated between cats if the owner was unsure of the cat responsible.” [3]

As a result of her “alternating attribution” (my term, not Fiore’s) method, it’s possible that five cats were incorrectly included among the hunters (see Note 2 for details). If so, the proportion of hunters was not 71%, but 61%.

Other Studies
Either way, Fiore’s findings correspond reasonably well with those of a five-month survey of 618 British households, in which 986 cats brought home 14,370 prey items. This research revealed that, although 91% of cats returned at least one item, “approximately 20–30% of cats brought home either no birds or no mammals.” [5] Her results also seem to be in line with those published by Churcher and Lawton, whose yearlong “English Village” study (involving approximately 70 cats and 1,090 documented prey items) found that that 8.6% of cats brought home no prey [4] (though the authors don’t specify the percentage of cats that returned no birds).

On the other hand, it is not uncommon for such studies to find that more than half of the study cats returned no prey. In their pilot study of cat predation in Bristol (UK), for example, Baker et al. reported that 77 cats returned a total of 212 prey items to 52 participating households, but that “in each sampling period, the majority of cats (51–74%) failed to return any prey.” [6] Their subsequent 12-month study (this time involving 186 Bristol households, 275 cats, and 495 prey items) found a similar level of apparent non-hunters: roughly 61%. [7]

Any number of factors might contribute to these apparent differences, perhaps the most likely “culprits” being environmental (e.g., density of both birds and cats, habitat type and size, etc.) and sampling bias (as Baker et al. put it, “cat owners whose pets were killing lots of birds may have wished to hide the fact; alternatively, they may have been keen to show off their cat’s prowess.” [7])

Add It Up
Fiore began to quantify predation by calculating, based on the number of birds brought home by study cats, an average number of birds killed each year per cat. But, as I’ve discussed previously, using the average to describe predation rates (the distribution of which is highly skewed) overestimates the impact of cats on wildlife. Barratt offers a useful rule-of-thumb method (one echoed by Fitzgerald and Turner [8]) as an alternative:

“…median numbers of prey estimated or observed to be caught per year are approximately half the mean values, and are a better representation of the average predation by house cats based on these data.” [9]

Using the median—1.91 birds/cat/year—instead of the mean, cuts Fiore’s estimated predation rate of 3.44 nearly in half. (Among the more puzzling items I uncovered while reviewing Fiore’s thesis was her apparent miscalculation of the average predation rate—where Fiore comes up with 3.44 birds/cat/year, I get only 2.79. See Note 3 for a detailed explanation.)

In any case, what’s far more interesting is how Fiore adjusts her estimate based on the results of feathers discovered in scat.

Scat Analysis
Three of Fiore’s participants (who, together, owned six of the study cats) collected and bagged their cats’ scat for five consecutive days on a monthly basis. A fourth owner participated in this part of the study for just one month, and collected scat for three days.

Additional scat data was acquired via “litter box cleanups,” in which “a few volunteers were convinced to bag the entire contents of the litter box when it was cleaned.” [3] The results, according to Fiore, were rather dramatic:

“Out of 215 separate scat analyses, each of which could have composed several beakers of fecal material, feathers were found a total of 28 times. In only one instance, however, did the owner know that a bird had been killed and/or consumed.” [10]

Equally dramatic were the mathematical and statistical gymnastics Fiore employed to arrive at her conclusions. Her figure of 21%, for example, as “a mean value of the percentage of time a cat could be expected to ingest a bird with no owner knowledge,” [10] remains a mystery to me. Despite numerous attempts, I have been unable to sort out exactly how Fiore arrived at this figure.

Dividing 27 occurrences of “unexpected” feathers by 214 total analyses (subtracting in each case for the one instance of “expected” feathers) ought to get us close, it seems—but falls well short (12.6%).

Litter Box Cleanups
Of the 215 analyses, 24 were litter box cleanups, a data collection method plagued with problems. To begin with, only 11 owners (representing 19 cats) participated. Fiore acknowledges the limitations associated with this small sample size, but overlooks a thornier issue.

Fiore considered each cleanup—regardless of how many cats were using the litter box, or for how many days—a single data sample. If a feather was found during analysis (the details of which are described on Fiore’s website), then one additional kill was attributed to a single cat (again, alternating among cats in multi-cat households). While this is a conservative approach in one respect—no more than one bird could be recorded for any positive result—it fails to adequately account for the high number of negative results. A litter box containing the waste of three cats, accumulated over a period of five or more days (six of the 24 cleanups were of this type, and in only one case were feathers found), was treated no differently from one containing a single day’s waste from one cat.

This per-household approach allows a negative result in the first case to be offset by a positive result in the second—despite their very different implications.

On the other hand, at least two volunteers involved in the litter box cleanups also owned indoor cats, and it was impossible to determine whether it was their indoor or indoor/outdoor cats that were “contributing” to the study. This may have resulted in some false negatives.

Given all the uncertainty involved with Fiore’s litter box cleanups, it’s difficult to see how this aspect of her study contributes in any meaningful way to the overall findings. Better, I would say, not to include these results in any calculations—and perhaps disregard them entirely.

Monthly Collections
Fiore’s primary method (making up 191 of the 215 analyses) for scat analysis proved less problematic than the litter box cleanups—but was not without its own shortcomings.

Again, the sample size was quite small—only four participants in all (representing seven cats). And, once again, owners of multiple cats (two of the three long-term participants) were treated—from a statistical point of view—as if they each owned just one cat. A negative result in a three-cat household was weighted the same as an instance of feathers found in a single-cat household.

Worse, by alternating attributions of kills that could not linked to a specific cat in a multi-cat household, Fiore effectively makes hunters out of non-hunters (see Note 2 for a detailed explanation). In fact, given enough of these attributions—and it wouldn’t take many—all of the study cats would be categorized as killers.

Taking into account the number of cats in each household that participated in monthly collections (see Note 4), the number of scat analyses rises dramatically, from 215 to 354—and the average occurrence of feathers drops to just 7.6%.

Lucky 13
In the case of Cat 13—the study cat with the most “scat kills” (instances of feathers detected in scat when no birds were returned home) by far—feathers were found in 14 of 80 (17.5%) daily samples collected, prompting this reaction from Fiore:

“It is interesting to speculate as to the outcome of this study if all the volunteer owners had been as conscientious as this particular owner in collecting scat every month. Additionally this owner, who is retired, is very mindful of her cat’s whereabouts but still failed to find many kills.” [3]

But even Cat 13’s apparent penchant for secretive hunting yielded a frequency of found feathers well below Fiore’s suggested overall rate of 21%. And what about the other two long-term participants, whose 23 monthly samples (108 days’ worth—collected from five cats, not one, don’t forget) revealed just eight occurrences of feathers? Their frequency of secretive hunting was 7.4%—before accounting for the multiple cats involved (as described in Note 4), which would drop the rate to just 3%.

Was the owner of Cat 13 any more conscientious than the other two? Perhaps. Fiore notes that this woman, “appeared to be very serious about the study and never failed to turn in scat on a monthly basis; reminders were never required.” [3] Still, the other owners were hardly sitting on the sidelines—they turned in 108 samples between them. And it’s not clear what detrimental effect requiring a reminder might have had on the results; on the contrary, Fiore writes: “It is believed that scat volunteers conducted their collection correctly.” [3]

It’s difficult not to detect bias in Fiore’s praise for the diligence demonstrated by Cat 13’s owner—or, more to the point, her appreciation for the cat’s performance. Although this cat’s behavior is—as illustrated by Fiore’s own data—exceptional, Fiore seems to suggest that it’s the norm.

Corroboration and Disclaimers
Fiore is quick to point out various factors that would have allowed kills to go undetected by scat analysis. The condition of the birds recovered, for example, suggests that some cats don’t eat their prey, in which case scat would not have contained feathers. Nestlings, because they lack feathers, also would go undetected.

And even adult birds, suggests Fiore, may not have feathers to be discovered later. “Generally,” she writes, “cats pluck the feathers before consuming the bird.” [3] Although Fiore cites the work of other researchers on this point (work I’ve yet to chase down), her own findings seem to contradict this claim; plenty of feathers were found in scat. (Fiore’s claim also begs the question: If cats are expected to strip the feathers from the birds they kill, why use feathers found in scat as a measure of predation?)

Fiore is doubtful that “one of the study cats ate a bird it did not kill and that in turn feathers were detected in the scat,” [3] but Fitzgerald and Turner have suggested otherwise:

“Carrion is eaten, but is difficult to distinguish from animals killed by cats, unless it is from a large animal that a cat could not kill (e.g., sheep or kangaroo). Even the presence of maggots with the food is not a certain indicator, because cats may return later to prey they have killed and cached.” [8]

Although Fiore acknowledges the challenges inherent in her analysis method, she argues that they are outweighed by the benefits:

“Scat analysis is probably the most reliable estimate of bird kills, although it is a very conservative one. The results are hard to refute. When a feather is found it is proof that a kill was made or a carcass consumed… scat analysis is important because often cats do not bring their kills to the owner, and frequently the owner is not home to accept a kill should one be presented. Many of the owner volunteers reported not seeing their cat(s) for many days in a row (one owner did not see her cat for several months during the study). Collected kills were very conservative, and seemed to be based in part on the relationship of the owner with their cat(s). Unfortunately, absentee owners were the ones most unwilling to provide scat.” [3]

It seems Fiore wants to have it both ways: When it comes to defending the value of scat analysis, she’s quick to point out how much predatory activity the owners might be missing. When she’s emphasizing the conservative nature of prey tallies, though, Fiore cites a number of detailed firsthand accounts from cat owners—painting a rather different picture of owner involvement:

  • “There were numerous calls during the course of data collection about missing remains, cats seen eating birds but no remains could be found, cat running off with prey…”
  • “The wife of one of the volunteers admitted to seeing her cat drag a cardinal under the porch, but she would not retrieve it…”
  • “The owner of Cat 30 reported that she had seen… her cat eat an entire bird (even the head) and that there was no evidence left to give us.”

Her inconsistency raises questions not only about her findings, but also—far more unsettling ones—about her objectivity as a researcher.

Found Feathers
Despite results that are—at best—mixed, Fiore’s conclusions are imbued with certainty and drama. They also tend to misrepresent her research. Fiore’s claim that “scat analysis may indicate, as in this study, that a far greater number of birds are consumed than was previously thought” [3] is based on her misuse of means to characterize predation levels. Using medians instead, it becomes clear that—in terms of the distributions’ central tendency—there is no difference between her original data set and the one that includes scat kills.

More problematic, though, are Fiore’s claims about the secretive hunting habits of cats:

“Probably the most important information which can be gained from the scat analysis (coupled with owner bird collection) is that most cats do kill birds. And in all cases but one, when feathers were found in scat, the owner was unaware that the cat had eaten a bird. This and other data from this study would seem to refute Dr. Patronek’s claim that ‘cats tend to bring prey home.’” [3] (See Note 5 for details regarding Fiore’s apparent dispute with Patronek.)

Actually, Fiore’s own data indicate that cats do, in fact, “tend to bring prey home”—nearly four in five, if her mysterious 21% figure is to be believed. And her assertion about the surprising nature of kills revealed through scat analysis is—although technically true—highly misleading. She seems to be suggesting that scat collection was done randomly, in which case we would expect some collections to correspond with documented kills. Fiore’s reporting, however, indicates no such randomness. In fact, it’s entirely likely that participants (thinking such activity would at least be redundant, or worse, detrimental to the study) would have collected scat only when they were unaware of their cat(s) having killed a bird.

By framing her findings this way, Fiore effectively dismisses the vast majority of analyses (187 of 215, or 87%, using her analysis method; 326 of 354, or 92%, accounting for multi-cat households) in which no feathers were found.

When the ABC summarizes Fiore’s work in their brochure Domestic Cat Predation on Birds and Other Wildlife, they only make matters worse by conflating different aspects of her research:

“In a study of cat predation in an urban area, 83% of the 41 study cats killed birds. In all but one case, when feathers were found in scat, the owner was unaware that their cat had ingested a bird. In fact, the majority of cat owners reported their cats did not bring prey to them. Instead, the owners observed the cats with the bird or found remains in the house or in other locations.” [11]

Reading the ABC’s version, one might easily get the impression that all 41 cats were involved in the scat analysis, or that the scat collections were done randomly. (Or that cats, in order to be considered cooperative participants in predation studies, are expected to deposit their prey in the laps of their owners, or some other pre-determined location.)

Connecting the Dots
Let’s set aside my (numerous) complaints regarding Fiore’s scat analysis, and my claim that she both miscalculated and misused the average predation rate. Assuming both figures are valid, Fiore’s use of that 21% figure to adjust the predation rate upward, from 3.44 to 4.2 birds/cat/year is also a problem. The scat analysis should (again, assuming it was done properly, included sufficient sample sizes, etc.) reveal something about the secretive hunting behavior of the study cats—in terms of (1) its frequency, and (2) its extent. Fiore’s misstep is in linking the frequency directly to predation levels.

Properly adjusting the estimated predation level would involve, first, correcting the proportion of cats that hunt to account for the frequency of secretive hunters. Using Fiore’s data to illustrate:

71% + [(100%-71%) x 21%] = 77%

Once we adjust for those cats that don’t bring prey home, we can multiply this figure by the number of outdoor cats (see Note 6). Again, using Fiore’s data (described in the Cat Density section below):

40,836 pet cats x 43% allowed outdoors = 17,559 hunting cats

Multiplying this result by the median predation rate (1.91), we get a total of 33,538 birds/year killed by pet cats in Wichita—less than half Fiore’s estimate of 73,750. (This figure might be refined further by considering separate predation levels: one for the secretive hunters, and another for those cats known to bring prey home. Unfortunately, Fiore’s sample size is too small to make such a comparison, but it’s not difficult to imagine different hunting behaviors resulting in different success rates.)

To reiterate, I’m using Fiore’s numbers here only to illustrate how I would connect the dots between scat analysis results and predation levels.

Two Key Points
Fiore’s goal of obtaining a more accurate tally of birds killed by cats was (and is) admirable. However, her use of scat analysis was largely unsuccessful in achieving that goal. In fact, Fiore’s analysis method actually added to the uncertainty in two important ways:

  1. By alternating attributions of kills that can’t be linked to any one cat in a multi-cat household, Fiore essentially categorizes each one of them as a hunter.
  2. By weighting multi-cat households no differently from single-cat households, Fiore ignores a great deal of evidence suggesting that most cats are not, in fact, hunting without their owners’ knowledge. Although the number of “scat kills” is conservative as a result, her analysis method gives greater importance to what is unknown than to what is known.

Radio Tracking
Among the many challenges Fiore ran into while trying to track study cats were owner objections, physical barriers (e.g., fences), and radio signal strength/continuity in an urban setting. As a result, she was able to study only eight cats for a total of 57 hours (almost all during daylight hours).

Given the limited value of Fiore’s tracking activities—and my focus on the aspects of her thesis that pertain more directly to predation—I’ll move on to her estimate for the number of cats in Wichita.

Cat Density
Fiore used two different methods to estimate the number of cats in Wichita. The first, which is rather clever, involved combining the results of two telephone surveys: the Pet Ownership Survey was used to (among other things) poll respondents about whether or not they had vaccinated their cat(s) against rabies; a survey of local veterinarians was used to estimate the annual total of such vaccinations in Wichita. “If 500 cats received vaccinations,” writes Fiore, “and respondents indicated that 50% of pet cats had been vaccinated, 1000 cats would be the expected density.” [10]

For the second method, Fiore multiplied the number of Wichita households by the estimated number of cats per household (1.52), as determined through a random telephone survey.

Results of the first method yielded an estimate of 35,737 pet cats in Wichita, whereas the second method produced an estimate of 40,836 pet cats. (The skewed nature of the cats/household distribution (many owners having one or two cats, and a few having many cats) will tend to push such estimates upward.)

In addition, Fiore estimates (in her original thesis document, but not in the summarized version that appears on her website) the number of stray and feral cats in the city, ultimately arriving at a figure of 124,537. Deriving such estimates is always dodgy work, as so little trustworthy information is available. Additional caution is in order when these figures are used to project predation levels of stray and feral cats, as Fiore has done (as described in the Christmas Bird Count section, below).

For one thing, there are some questionable assumptions wrapped up in her estimates—not the least of which is that the predation rates and patterns of stray and feral cats are similar to those of pet cats. Clifton has suggested that they are not:

“The feral cat toll on birds is unlikely to be more than half as high as the pet cat toll. First, there may be twice as many free-roaming pet cats as ferals old enough to hunt for a living. Second, ferals who hunt for a living tend to hunt mice by night, not birds, who are mostly not out at night. Third, feral cats appear to hunt no more, and perhaps less, than free-roaming pet cats. This is because, like other wild predators, they hunt not for sport but for food, and hunting more prey than they can eat is a pointless waste of energy… Finally, relatively few cats are even capable of successfully hunting birds.” [2]

Christmas Bird Count
Fiore used data from the Wichita Audubon Society’s “first area-wide bird count of Northern Cardinals,” [3] an event coinciding with the National Audubon Society’s 99th annual Christmas Bird Count. Combining this data with the number of households in the city, she estimated that there were 316,477–424,922 cardinals in Wichita at the time.

It’s important to remember, as is made clear on the North American Breeding Bird Survey website, that such surveys provide “an index of relative abundance, rather than a complete count of breeding bird populations.” Fiore admits, “a census of a single bird species effected [sic] by urban cats in Wichita is an estimate of population density within an accuracy of one order of magnitude,” [3] but persisted.

As a result, Fiore was able to compare estimates of the overall cardinal population with estimates of those killed by cats. However, her “accounting practices” suggest that she’s not exactly impartial on the subject of predation. Fiore states unequivocally, for example, “the mean of 2.98… cardinals seen per residence is high as very few surveys were returned by people who saw no cardinals.” [3] Sure that “people only reported when they saw cardinals, thus skewing the data towards high values,” Fiore discards the mean and uses frequency quantiles instead.

Among the possible sources of participant bias Fiore cites:

“…adding counts together rather than reporting total numbers seen at one time, counting birds on someone else’s property, estimating numbers by song alone, or sending in the forms with numbers that did not exist on December 19 but that the resident had seen on some previous occasion.” [3]

Perhaps she was correct in her assessment, but it’s peculiar that Fiore never expressed a similar concern for her obviously skewed distribution of birds killed by cats—and as a result, overestimated predation levels. In short, she seems determined to lower the estimate of birds in the area while at the same time raising the estimate of birds thought to be killed by Wichita’s cats. (In fact, her thesis is littered with such maneuvering; Fiore uses nearly every instance of uncertainty to imply an impact on wildlife greater than her research actually suggests.)

Fiore’s bird collection data indicated that 7% of the birds taken were Northern Cardinals. Combining this figure with her estimates of the populations of all outdoor cats and cardinals in Wichita, she concludes, “there are at least 43,035–50,285 Northern Cardinal deaths per year due to cat predation.” [3] This corresponds to roughly 15% of her estimated cardinal population—a figure Fiore describes as “extremely conservative.”

Impact of Free-roaming Cats
Considering the numerous limitations of her study (many of which she acknowledges), Fiore seems quite comfortable extrapolating her results—arguing, for example, that “over half a million birds meet their death each year in the city of Wichita because of a cat.” [3] Of course, this figure relies on dubious estimates of the number of outdoor cats, an exaggerated predation estimate, and other factors that cast serious doubt on its accuracy.

Fiore’s confidence may come, in part, from the fact that other researchers have reported similar findings. But, as I have gone to great lengths to emphasize over the past few months, such findings rarely hold up to careful scrutiny. And sometimes, results are simply misunderstood—as when Fiore misinterprets Fitzgerald’s work:

“…several studies have been done to access [sic] the importance of birds as a percentage of total diet, as in Fitzgerald [12] who estimates birds represented 21% of cat diets.” [3]

In fact, Fitzgerald was referring not to the percentage of dietary intake, but of how often birds were found in scat or stomach contents (a distinction I explain in detail here):

“On all continents, birds are usually much less important than mammals; birds were present on average at 21 per cent frequency of occurrence, and mammals at 68 per cent. Many species are represented by just one or two individuals.” [12]

Something else Fiore overlooks is that the type of predation observed by her participants may have been largely compensatory; that is, the birds killed were of sufficiently poor health that they were unlikely to survive anyhow. Two studies have reported such findings. [7, 13] If this were the case, even her inflated estimates—however dramatic sounding—would actually have little impact on the population of Wichita’s birds.

In any case, the cardinals in the area seem to be doing fine. Between 1970 and 2000, Wichita’s human population increased 24.5%, from 276,554 to 344,284. Such an increase—accompanied by various related development activities—is generally associated with habitat loss, fragmentation, pollution, and any number of other factors that adversely affect bird populations. Including more cats. Nevertheless, data from the North American Breeding Bird Survey suggests that the number of Northern Cardinals in the area was on the increase over this period.

Wichita Cardinals Over Time
Caption: BBS Data: Northern Cardinals for Three Wichita-area Survey Routes (adapted from North American Breeding Bird Survey website)

Cat Regulations
Fiore used a telephone survey of Wichita residents to inquire about a range of pet ownership issues, as well attitudes concerning possible regulations affecting cats/cat owners. Among the questions Fiore posed to Wichita pet owners:

“At the present time dogs have to be licensed and kept on leashes. How do you feel about having cats regulated so that they would have to be licensed and confined to the owner’s property?”

Thirty-one percent of cat owners were completely opposed, while 44% said they were at least somewhat in favor—“a surprisingly high figure,” as Fiore notes. Pet owners were then asked a follow-up question:

“If it were found that unregulated cats are killing too much wildlife, would you change your opinion?”

Survey results are always tricky to interpret, and two people can often draw very different conclusions from them. Rather than focus on the responses, then, I’d like to take just a moment to focus on the question—starting with the term unregulated. Is that even necessary? How about simply cats? And what do me mean by wildlife here? And how much is too much?

Nearly half of respondents said that they would not change their minds, and Fiore sounds downright exasperated with their explanations:

“Cat owners are in denial about what their cats are doing. They seem sad over the death of a cardinal, but they refuse to take responsibility for the cat by stating ‘There is nothing I can do’ or ‘…but that’s what cats do.’ The owner of study cat 14 wrote ‘Cats are part of nature same as birds. Species come and go. I don’t think nature should be artificially regulated.’” [3]

Fiore clearly disagrees. Indeed, she tipped her hand much earlier, when, in Chapter 1, she wrote:

“If a human killed any of these birds or was caught in possession of them without a valid permit, he or she would face penalties including fines, and depending on the severity and species, possible jail time. Cats across America and their owners face no punishment.”

*     *     *

A story in the April 18, 1998 edition of The Wichita Eagle explained Fiore’s proposed project this way:

“Fiore, a graduate student at Wichita State University, will spend a year counting Wichita cats and their feathered victims for her master’s thesis. As bird populations decline, Fiore thinks it’s important to know how far cats are sinking their teeth into the feathered world… She points out that even the cutest kitty can be a remarkable hunter, although skill varies from cat to cat. But Fiore doesn’t want people to think she’s anti-cat. ‘I’m out to study the problem.’” [14]

In the same piece, Fiore brings up the Wisconsin Study (referring to its “intermediate value” of 39 million birds), and it’s revealed that she’s the vice president of the Wichita Audubon Society. Nevertheless, Fiore assures readers of her objectivity: “We’re just scientists who want to see if there’s a problem.”

Fiore’s thesis dedication, too, suggests an air of integrity and goodwill:

“This thesis is dedicated to my cat owner volunteers who made this study possible and to cat lovers and bird lovers around the world in the hopes that we can all work together to preserve native wildlife.” [3]

Having spent weeks reviewing Fiore’s work, though, I’m not buying it. In fact, I can’t help but read in her dedication an inside joke of sorts: her invitation is to preserve native wildlife; domestic cats, as she makes clear elsewhere, are not native.

In a follow-up story for The Wichita Eagle, Fiore reported her results: Wichita cats kill anywhere from 542,000 to 645,000 each year. But, according to the Eagle’s Roy Wenzl, it wasn’t the results that got some residents worked up. “Fiore’s study upset people. Not what she found. But what she did, in raising the question.” [15]

“‘I didn’t understand that,’ said Bob Gress, a cat owner, a naturalist and the director of the Great Plains Nature Center, who helped her with her study. ‘All she was doing was collecting information. I don’t think any of us should ever be afraid of the truth,’ Gress said. ‘But some people saw this as an assault on cats. Even some veterinarians seemed to resent what she was doing.’” [15]

Gress’ comment got me thinking not just about Fiore’s thesis, but also about how it’s been used—primarily by the ABC. As much as we might like to believe otherwise, scientific inquiry doesn’t happen in a vacuum; there is always a context to consider. It’s clear from her document that Fiore was well aware of the debate surrounding free-roaming cats at the time—and must have a good idea, too, of the possible implications of her work (e.g., ammunition for those who oppose free-roaming cats and TNR, the possible wholesale extermination of stray and feral cats, etc.).

And then there’s the matter of just how much truth there is in Fiore’s findings—plagued as they are by her flawed analysis and obvious bias.

Which is not to say that she (or anybody else) should be discouraged from studying such complex, controversial issues. But there is a great responsibility that comes with such endeavors. Fiore, in her thesis work, simply didn’t live up to that responsibility.

Notes
1. Fiore writes: “A researcher in southern Illinois estimated that his three house cats, which he followed for 6 years, only brought home about 50% of killed prey.” [16] As I’ve pointed out previously, this is a surprisingly common misunderstanding of George’s work. In fact, George was merely adjusting predation levels based on the fact that the “delivery area” was not always monitored: “…the study registered 50 percent of the cats’ captures—a percentage roughly corresponding to: 1, the average amount of total time the delivery area was under observation for recording prey; and 2, the number of prey items logged in the same year when the delivery area was under continuous day-and-night scrutiny, compared to the number logged (during equivalent seasonal and hourly periods) when continuously scrutinized for lesser amounts of time.” [16]

2. Fiore provides little detail regarding the application of her alternating attribution method, requiring some speculation on my part. An example, however, may prove illustrative. Consider Cats 17 and 18, which lived in the same home. During the bird collection phase of the study, Cat 17 was credited with just two kills. Cat 18, on the other hand, brought home 17 birds—clearly the more successful hunter. The question is: Did Cat 17 really kill those two birds, or are these simply the result of kills that could not be attributed to either cat?

At any time during the yearlong study, kills that could not be connected directly to a particular cat were, as Fiore explains, “alternated between cats.” Imagine if, at the time Cat 17 had 15 known kills, another kill was discovered—but this time, it was unclear which cat was responsible. That kill, then, would be attributed to Cat 17, bringing its total to 16. The next such kill would be attributed to Cat 18—effectively shifting its status from non-hunter to hunter. Two more such instances would yield the results described by Fiore: two kills for Cat 17 and 17 for Cat 18—though it should be clear that just two “mystery kills” would, using Fiore’s analysis method, create the impression that both cats are hunters. (In fact, were it not for their random numbering—Cat 17 being credited with the first “mystery kill” only because of its lower ID number—such an impression would result from just one such kill.)

To be clear: the scenario described above is speculative. But, given the impact of Fiore’s alternating attributions—increasing rather dramatically the proportion of apparent hunters—careful scrutiny is warranted.

3. Calculating the mean should be quite straightforward, of course. Fiore first calculated a daily rate for each cat by dividing that cat’s catch by the number of days in which its owner participated in the study. She then averages that rate over all 41 cats (coming up with 0.0094, compare to my 0.0076), and multiplies the result by 365 days/year.

4. Using this analysis method, a five-day collection from a three-cat household would constitute not five, but 15 analyses. Now, there’s no way of knowing that all three cats contributed to the scat collection; conversely, there’s no reason to think that just one cat contributed, as Fiore assumes.

5. At times, Fiore’s thesis reads as if it was a rebuttal to Gary Patronek’s article, Free-roaming and feral cats—their impact on wildlife and human beings, which was published around the time Fiore was conducting her research. Interestingly, had Fiore read Patronek’s paper more closely, she might not have used the mean to estimate predation rates. “The small proportion of cats with a large number of kills,” writes Patronek, “indicate that the number of animals killed per cat has a skewed distribution, which would tend to bias the mean upward.” [17]

6. Fiore is skeptical of her Pet Ownership Survey results, which indicate that 43% of cat owners keep their cats indoors (“People who interpreted this question to mean that because the cat was inside ‘most of the time’ it was an indoor cat, would be incorrect for purposes of this study.” [10]). However, as Merritt Clifton points out, it’s likely that she actually overestimates the number of outdoor cats when she “decided, based on a survey of Wichita residents, that about half of all cat-keepers allow their cats to roam, and presumed that could be extrapolated to mean that half of all pet cats roam.” This, writes Clifton, contradicts Animal People findings “that cat-keepers whose cats do not roam have, on average, from two to three times more cats than those whose cats can roam.”  [2] Further support comes from a 2003 survey that found 60% of cats were kept strictly indoors, and nearly half of those allowed outdoors were out for less than two hours each day. [18]

Literature Cited
1. Dauphiné, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2009. p. 205–219.

2. Clifton, M. Where cats belong—and where they don’t. Animal People 2003 [cited 2009 December 24].  http://www.animalpeoplenews.org/03/6/wherecatsBelong6.03.html.

3. Fiore, C.A., The Ecological Implications of Urban Domestic Cat (Felis catus) Predation on Birds In the City of Wichita, Kansas, in College of Liberal Arts and Sciences. 2000, Wichita State University: Wichita, Kansas

4. Churcher, P.B. and Lawton, J.H., “Predation by domestic cats in an English village.” Journal of Zoology. 1987. 212(3): p. 439-455.

5. Woods, M., McDonald, R.A., and Harris, S., “Predation of wildlife by domestic cats Felis catus in Great Britain.” Mammal Review. 2003. 33(2): p. 174-188.

6. Baker, P.J., et al., “Impact of predation by domestic cats Felis catus in an urban area.” Mammal Review. 2005. 35(3/4): p. 302-312.

7. Baker, P.J., et al., “Cats about town: is predation by free-ranging pet cats Felis catus likely to affect urban bird populations? Ibis. 2008. 150: p. 86-99.

8. Fitzgerald, B.M. and Turner, D.C., Hunting Behaviour of domestic cats and their impact on prey populations, in The Domestic Cat: The biology of its behaviour, D.C. Turner and P.P.G. Bateson, Editors. 2000, Cambridge University Press: Cambridge, U.K.; New York. p. 151–175.

9. Barratt, D.G., “Predation by house cats, Felis catus (L.), in Canberra, Australia. II. Factors affecting the amount of prey caught and estimates of the impact on wildlife.” Wildlife Research. 1998. 25(5): p. 475–487.

10. Fiore, C.A. and Sullivan, K.B. (2000) Domestic Cats (Felis catus) Predation of Birds in an Urban Environmenthttp://www.carolfiore.com/Article.html Accessed July 27, 2010.

11. ABC, Domestic Cat Predation on Birds and Other Wildlife. n.d., American Bird Conservancy: The Plains, VA. www.abcbirds.org/abcprograms/policy/cats/materials/predation.pdf

12. Fitzgerald, B.M., Diet of domestic cats and their impact on prey populations, in The Domestic cat: The biology of its behaviour, D.C. Turner and P.P.G. Bateson, Editors. 1988, Cambridge University Press: Cambridge; New York. p. 123–147.

13. Møller, A.P. and Erritzøe, J., “Predation against birds with low immunocompetence.” Oecologia. 2000. 122(4): p. 500-504.

14. Potter, T., Counting Cats and Their Winged Prey, in Wichita Eagle, The (KS). 1998. p. 9A

15. Wenzl, R., Are You Harboring a Killer on Your Couch?, in Wichita Eagle, The (KS). 1999. p. 9A

16. George, W., “Domestic cats as predators and factors in winter shortages of raptor prey.” The Wilson Bulletin. 1974. 86(4): p. 384–396.

17. Patronek, G.J., “Free-roaming and feral cats—their impact on wildlife and human beings.” Journal of the American Veterinary Medical Association. 1998. 212(2): p. 218–226.

18. Clancy, E.A., Moore, A.S., and Bertone, E.R., “Evaluation of cat and owner characteristics and their relationships to outdoor access of owned cats.” Journal of the American Veterinary Medical Association. 2003. 222(11): p. 1541-1545.

The Work Speaks—Part 7: Leaky Sink

In April, Conservation Biology published a comment authored by Christopher A. Lepczyk, Nico Dauphiné, David M. Bird, Sheila Conant, Robert J. Cooper, David C. Duffy, Pamela Jo Hatley, Peter P. Marra, Elizabeth Stone, and Stanley A. Temple. In it, the authors “applaud the recent essay by Longcore et al. (2009) in raising the awareness about trap-neuter-return (TNR) to the conservation community,” [1] and puzzle at the lack of TNR opposition among the larger scientific community:

“…it may be that conservation biologists and wildlife ecologists believe the issue of feral cats has already been studied enough and that the work speaks for itself, suggesting that no further research is needed.”

In fact, “the work”—taken as a whole—is neither as rigorous nor as conclusive as Lepczyk et al. suggest. And far too much of it is plagued by exaggeration, misrepresentations, errors, and obvious bias. In Part 6 of this series, I critiqued Christopher Lepczyk’s paper Landowners and cat predation across rural-to-urban landscapes, published in 2003. Here, I’m going to examine two studies conducted by Philip J. Baker and various collaborators.

The Studies
In the first study, Baker et al. distributed questionnaires to 3,494 households across a 4.2 km2 area of northwest Bristol (UK), and used responses to estimate cat ownership and predation levels (via prey returned home). [2] This work served as a pilot study for the subsequent study.

The second study, conducted August 2005–July 2006, was also conducted in Bristol. Added to the original 4.2 km2 site were nine 1 km2 sites. The researchers used very similar sampling methods, but, based on results of their pilot study, had somewhat more specific objectives:

  1. To quantify cat density
  2. To quantify the various species of birds killed by cats.
  3. To estimate the impact of cat predation by species and site.
  4. To determine whether the predation observed was compensatory or additive. [3]

Sources and Sinks
Among the authors’ conclusions from the pilot study was that, at least for three of the ten bird species surveyed:

“…it is possible that cat predation was significantly affecting levels of recruitment and creating a dispersal sink for more productive neighboring areas.” [2]

Dispersal sinks or habitat sinks, are patches of low-quality habitat that are unable to sustain a population of a particular species were it not for immigration from higher quality habitat patches—called sources—nearby. So, what Baker et al. are suggesting is that predation by cats may be extensive enough to deplete populations of certain bird species at their study site, such that at least some of the birds observed there were immigrants from nearby habitat.

But the authors also point out that, “despite occurring at very high densities, the summed effects on prey populations appeared unlikely to affect population size for the majority of prey species.” [2] And even for House sparrows, which were among the three species of concern (and, apparently, in decline throughout the UK’s urban areas), Baker et al. note that their “numbers appear to be stable in Bristol as a whole.”

So, is the area a habitat sink or not?

A cursory look at the theory and empirical measurement of source-sink dynamics reveals great complexity. Variations across time and geography must be taken into account—the ebb and flow of local populations might easily be overlooked or misunderstood by applying a short time horizon (i.e., 12 months) and arbitrary boundaries (i.e., those that define the study site). Annual rainfall, for example, can dramatically influence yearly population levels on a local scale. And it’s been shown that source-sink dynamics can occur over distances of 60–80 km. [4] In fact, the determination of sinks and sources in the field can be problematic enough that sources sometimes appear to be sinks and vice-versa. [5]

Given the complex nature of source-sink dynamics, the suggestion by Baker et al. that cat predation may be creating a habitat sink seems rather premature. Such assertions—despite the requisite disclaimers (the authors note only that “it is possible”)—tend to attract attention and gain traction. Longcore et al., for example, cited the pilot study in their 2009 essay, “Critical Assessment of Claims Regarding Management of Feral Cats by Trap-Neuter-Return.” [6]

Of greater interest to me, though, are the assumptions Baker et al. used to estimate the impact of cat predation.

Counting Cats and Counting Birds
In both studies, the authors quantified the impact of cat predation on bird populations by comparing different levels of predation with different bird densities. Their maximum impacts, for example, assumed that all cats were hunters—despite the fact that 51–74% of the cats included in the two studies brought home no prey at all—and that bird productivity was zero (i.e., no young birds survive to adulthood). As the authors admit:

“This was clearly not realistic, as the estimated maximum numbers of birds killed typically exceeded breeding density and productivity combined, such that the prey populations studied would probably have gone extinct rapidly at a local level or acted as a major sink for birds immigrating from neighbouring areas.” [3]

But how realistic are their other estimates?

A detailed examination of a single species at a one site (taken from the second study, for which such information is available) illustrates some flaws. I looked at House sparrows for the 1 km2 site designated as ST5277. Here, 18 participants reported that their 22 cats returned a total of 30 prey items, nine of which were birds (two of them “unidentified”). Of the birds returned home, two were House sparrows.

When it comes to estimating impacts, though, Baker et al. use figures of 332–1,245 House sparrows killed by the cats of ST5277. The maximum, we already know, is “not realistic,” but even the minimum seems awfully high. So, where are these birds coming from?

To start with, two adjustments have to be made to the original predation figure. First, the two unidentified birds are “distributed” across the categories of bird species that were identified. Then, we have to account for participant drop-out; not all of the 22 cats were surveyed for the entire year of the study. Now we’re up to an average of 8.7 House sparrows brought home annually by the cats at this site.

But of course there are more than 22 cats at ST5277. Baker et al. estimate that there are 314 of them (although we know very little about the factors that affect their hunting ability and success—for example, their access to the outdoors, age, etc.). We also know that only seven of the 22 cats included in the study brought home prey. In other words, 32% of the cats surveyed were documented hunters. Based on these numbers, then, we can estimate the yearly predation rate of House sparrows at ST5277 to be roughly 125—well short of the minimum proposed by Baker et al. (and just a quarter of their intermediate rate).

There are some minor differences between their method for estimating predation rates and mine. For the most part, though, the “missing” sparrows can be found in the authors’ use of a correction factor (3.3) proposed by Kays and DeWan to account for prey killed but not returned home. [7] Undoubtedly, cats fail to bring home all the prey they catch (though they also undoubtedly bring home prey they didn’t kill), but there is good reason to doubt Kays and DeWan’s “correction.” Among the flaws in their analysis were small, dissimilar samples of cats, and a failure to account for highly skewed data sets.

So, even setting aside the complexities of source-sink dynamics, these inflated predation rates, combined with the fact that “the estimates of breeding density presented in this manuscript should be regarded as minima,” [3] raise serious doubts about whether the site is in fact a habitat sink (or, if so, to what extent).

Compensatory and Additive Predation
As I’ve discussed previously, even accurately predicted levels of predation can be deceptive. There’s compensatory predation (in which prey would have died even in the absence of a particular predator, due to illness, starvation, other predators, etc.) and additive predation (in which healthy prey are killed). It’s the difference between, as Beckerman et al. put it, the “doomed surplus hypothesis” and the “hapless survivor hypothesis.” [8]

When it comes to relating predation to population levels, it’s critical to understand the difference, and know the extent to which each type is occurring.

To get at this critical issue, Baker et al. compared the physical attributes (e.g., muscle mass score, mean fat score, etc.) of 86 birds killed by collisions (e.g., with cars, windows, etc.) to those of 48 birds killed by cats. Although the authors point out, “the relationship between body mass and quality (i.e., likelihood of long-term survival and therefore reproductive potential) in passerines is complex,” they nevertheless conclude that the birds killed by cats “were likely to have had poor long-term survival prospects.” [3] (An earlier study comparing spleen mass arrived at essentially the same conclusion: that birds killed by cats “often have a poor health status.” [9])

Still, Baker et al. express caution about their findings:

“The distinction between compensatory and additive mortality does, however, become increasingly redundant as the number of birds killed in a given area increases: where large numbers of prey are killed, predators would probably be killing a combination of individuals with poor and good long-term survival chances. The predation rates estimated in this study would suggest that this was likely to have been the case for some species on some sites.”

But their inflated predation rates and low estimates of breeding density combine to diminish the apparent level of compensatory predation. Were these estimates adjusted to better reflect the conditions at the site, the “redundancy” the authors refer to would be reduced considerably.

*     *     *

It’s not clear why Longcore et al. cited the pilot study their essay, but left out any mention of the much larger subsequent study. Perhaps it was just a matter of timing—“Cats About Town” was published in August of 2008, while “Critical Assessment” was published in August of 2009. A year is not much time in the world of scientific journals, and it’s possible that the two manuscripts more or less crossed in the mail. On the other hand, the pilot study fits more neatly into the argument put forward by Longcore et al.—an argument that doesn’t even recognize the distinction between compensatory and additive predation.

Of course, Baker et al. did themselves no favors, either. By using inflated predation rates—the result of some peculiar, unjustified assumptions—they virtually buried the most important findings of their study.

References
1. Lepczyk, C.A., Mertig, A.G., and Liu, J., “Landowners and cat predation across rural-to-urban landscapes.” Biological Conservation. 2003. 115(2): p. 191-201.

2. Baker, P.J., et al., “Impact of predation by domestic cats Felis catus in an urban area.” Mammal Review. 2005. 35(3/4): p. 302-312.

3. Baker, P.J., et al., “Cats about town: is predation by free-ranging pet cats Felis catus likely to affect urban bird populations? Ibis. 2008. 150: p. 86-99.

4. Tittler, R., Fahrig, L., and Villard, M.-A., “Evidence of Large-Scale Source-Sink Dynamics and Long-Distance Dispersal among Wood Thrush Populations.” Ecology. 2006. 87(12): p. 3029-3036.

5. Runge, J.P., Runge, M.C., and Nichols, J.D., “The Role of Local Populations within a Landscape Context: Defining and Classifying Sources and Sinks.” The American Naturalist. 2006. 167(6): p. 925-938.

6. Longcore, T., Rich, C., and Sullivan, L.M., “Critical Assessment of Claims Regarding Management of Feral Cats by Trap–Neuter–Return.” Conservation Biology. 2009. 23(4): p. 887–894.

7. Kays, R.W. and DeWan, A.A., “Ecological impact of inside/outside house cats around a suburban nature preserve.” Animal Conservation. 2004. 7(3): p. 273-283.

8. Beckerman, A.P., Boots, M., and Gaston, K.J., “Urban bird declines and the fear of cats.” Animal Conservation. 2007. 10(3): p. 320-325.

9. Møller, A.P. and Erritzøe, J., “Predation against birds with low immunocompetence.” Oecologia. 2000. 122(4): p. 500-504.

The Work Speaks—Part 3: Predatory Blending?

In April, Conservation Biology published a comment authored by Christopher A. Lepczyk, Nico Dauphiné, David M. Bird, Sheila Conant, Robert J. Cooper, David C. Duffy, Pamela Jo Hatley, Peter P. Marra, Elizabeth Stone, and Stanley A. Temple. In it, the authors “applaud the recent essay by Longcore et al. (2009) in raising the awareness about trap-neuter-return (TNR) to the conservation community,” [1] and puzzle at the lack of TNR opposition among the larger scientific community:

“…it may be that conservation biologists and wildlife ecologists believe the issue of feral cats has already been studied enough and that the work speaks for itself, suggesting that no further research is needed.”

In fact, “the work”—taken as a whole—is neither as rigorous nor as conclusive as Lepczyk et al. suggest. And far too much of it is plagued by exaggeration, misrepresentations, errors, and obvious bias. In a previous post, I presented examples of researchers drawing big conclusions from small sample sizes. Here, I’ll discuss the important distinction between compensatory and additive predation—a point too often left out of the feral cat/TNR discussion.

Sins of Omission
Focusing on the number of prey injured or killed by cats, without also recognizing that there are different types of predation, implies that each and every bird, mammal, reptile, etc. is destined to be part of its species’ breeding population. Of course, that’s not at all how things work out in the natural world—with or without predation by cats.

And yet, numerous studies [2-10], reviews [11], and other published papers [12-14] fail to acknowledge the critical difference between compensatory predation (in which prey would have died even in the absence of a particular predator, due to illness, starvation, other predators, etc.) and additive predation (in which healthy prey are killed). It’s the difference between, as Beckerman et al. put it, the “doomed surplus hypothesis” and the “hapless survivor hypothesis.” [15]

This is a critical point when it comes to connecting predation rates (from cats or any other predator) to population impacts. The more additive the predation, the greater the potential impact on population numbers. Purely compensatory predation, on the other hand, is less likely to affect overall populations. Of course, the connection is seldom so simple and direct, and a number of factors (e.g., habitat area and type, base population numbers, etc.) influence the ultimate outcome—making it quite difficult to tease out specific causal relationships. Nevertheless, if we want to better understand the impact of free-roaming cats on wildlife, we cannot ignore the distinction between—and inherent implications of—these two types of predation.

Honorable Mentions
Although Churcher and Lawton failed to mention the distinction between compensatory and additive predation in their now-classic “English village” study [4], Churcher later suggested that their findings were largely in the compensatory category: “If the cats weren’t there, something else would be killing the sparrows or otherwise preventing them from breeding.” [16]

Woods et al. don’t address the topic directly, but warn against drawing direct connections between predation numbers and potential effects on population dynamics:

“Our estimates of the total numbers of animals brought home by cats throughout Britain should be treated with requisite caution and these figures do not equate to an assessment of the impact of cats on wildlife populations.” [3]

Unfortunately, other researchers have used this study to make exactly that connection. In “Critical Assessment,” for example, Longcore et al. cite Woods et al. (along with Lepczyk et al. 2003, the subject of a future post) when they write, “evidence indicates that cats can play an important role in fluctuations of bird populations.” [11]

Under-Compensating?
In their 2008 study, Baker et al. found that “birds killed by cats in this study had significantly lower fat and pectoral muscle mass scores than those killed by collisions,” [17] suggesting that they may have been among the “doomed surplus” portion of the population. Similar results were reported eight years earlier by Møller and Erritzøe, who found that “small passerine birds falling prey to cats had spleens that were significantly smaller than those of conspecifics that died for other reasons,” concluding ultimately that the birds killed by cats “often have a poor health status.” [18]

But Baker et al. express caution about their findings:

“…the distinction between compensatory and additive mortality does… become increasingly redundant as the number of birds killed in a given area increases: where large numbers of prey are killed, predators would probably be killing a combination of individuals with poor and good long-term survival chances.”

Whatever their concerns, it must be noted that Baker et al. inflated their predation numbers by a factor of 3.3 on the basis of Kays and DeWan’s dubious conclusions [9] (which I discussed in some detail previously). Doing so raises considerable doubts about any level of “redundancy,” as well the authors’ suggestion that cat predation in the area might be “creating a dispersal sink for more productive neighboring areas.” [19] (Such “sinks” can occur when predation outstrips local prey populations, requiring that prey be “recruited” from surrounding areas.)

Implications
Given all the work that’s been done on cat predation, one might expect the subject of compensatory predation to be addressed more fully and more often. By omitting this important issue from the feral cat/TNR discussion, researchers portray a situation both simpler and harsher (in terms of what it implies about the impact of free-roaming cats) than reality suggests. Whether or not such omissions are intentional, I cannot say. I do, however, find it curious—what’s included compared to what’s left out, and by whom.

References
1. Lepczyk, C.A., et al., “What Conservation Biologists Can Do to Counter Trap-Neuter-Return: Response to Longcore et al.” Conservation Biology. 2010. 24(2): p. 627-629.

2. Coleman, J.S. and Temple, S.A., On the Prowl, in Wisconsin Natural Resources. 1996, Wisconsin Department of Natural Resources: Madison, WI. p. 4–8. http://dnr.wi.gov/wnrmag/html/stories/1996/dec96/cats.htm

3. Woods, M., McDonald, R.A., and Harris, S., “Predation of wildlife by domestic cats Felis catus in Great Britain.” Mammal Review. 2003. 33(2): p. 174-188.

4. Churcher, P.B. and Lawton, J.H., “Predation by domestic cats in an English village.” Journal of Zoology. 1987. 212(3): p. 439-455.

5. Coleman, J.S. and Temple, S.A., “Rural Residents’ Free-Ranging Domestic Cats: A Survey.” Wildlife Society Bulletin. 1993. 21(4): p. 381–390.

6. Coleman, J.S. and Temple, S.A., Effects of Free-Ranging Cats on Wildlife: A Progress Report, in Fourth Eastern Wildlife Damaage Control Conference. 1989: University of Nebraska—Lincoln. p. 8–12. http://digitalcommons.unl.edu/ewdcc4/7

7. Hawkins, C.C., Impact of a subsidized exotic predator on native biota: Effect of house cats (Felis catus) on California birds and rodents. 1998. PhD Dissertation, Texas A&M University.

8. Hawkins, C.C., Grant, W.E., and Longnecker, M.T., “Effects of Subsidized House Cats on California Birds and Rodents.” Transactions of the Western Section of the Wildlife Society. 1999. 35: p. 29–33.

9. Kays, R.W. and DeWan, A.A., “Ecological impact of inside/outside house cats around a suburban nature preserve.” Animal Conservation. 2004. 7(3): p. 273-283.

10. Lepczyk, C.A., Mertig, A.G., and Liu, J., “Landowners and cat predation across rural-to-urban landscapes.” Biological Conservation. 2003. 115(2): p. 191-201.

11. Longcore, T., Rich, C., and Sullivan, L.M., “Critical Assessment of Claims Regarding Management of Feral Cats by Trap–Neuter–Return.” Conservation Biology. 2009. 23(4): p. 887–894.

12. Dauphiné, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2010. p. 205–219

13. Coleman, J.S., Temple, S.A., and Craven, S.R., Cats and Wildlife: A Conservation Dilemma. 1997, University of Wisconsin, Wildlife Extension. http://forestandwildlifeecology.wisc.edu/wl_extension/catfly3.htm

14. Andersen, M.C., Martin, B.J., and Roemer, G.W., “Use of matrix population models to estimate the efficacy of euthanasia versus trap-neuter-return for management of free-roaming cats.” Journal of the American Veterinary Medical Association. 2004. 225(12): p. 1871-1876.

15. Beckerman, A.P., Boots, M., and Gaston, K.J., “Urban bird declines and the fear of cats.” Animal Conservation. 2007. 10(3): p. 320-325.

16. n.a., What the Cat Dragged In, in Catnip. 1995, Tufts University School of Veterinary Medicine: Boston, MA. p. 4–6

17. Baker, P.J., et al., “Cats about town: is predation by free-ranging pet cats Felis catus likely to affect urban bird populations? Ibis. 2008. 150: p. 86-99.

18. Møller, A.P. and Erritzøe, J., “Predation against birds with low immunocompetence.” Oecologia. 2000. 122(4): p. 500-504.