Revisiting “Reassessment”

“Reassessment: A Closer Look at ‘Critical Assessment of Claims Regarding Management of Feral Cats by Trap-Neuter-Return’” has been revised and expanded!

Image of "Reassessment" Document

This paper, a brief review and critique of the essay “Critical Assessment of Claims Regarding Management of Feral Cats by Trap-Neuter-Return” by Travis Longcore, Catherine Rich, and Lauren M. Sullivan, now includes sections on Toxoplasma gondii, the mesopredator release phenomenon, and more. In addition, links and downloadable PDFs have been added to the list of references.

Over the past year, “Critical Assessment” has gotten a great deal of traction among TNR opponents, despite its glaring omissions, blatant misrepresenta­tions, and obvious bias. “Reassessment”—intended to be a resource for a broad audience, including, wildlife and animal control professionals, policymakers, and the general public—shines a bright spotlight on these shortcomings, thereby bringing the key issues back into focus.

Act Locally
Politics is, as they say, local. This is certainly true of the debate surrounding TNR. Policies endorsing TNR, the feeding of feral cats, etc. typically begin with “Town Hall” meetings, or even meetings of neighborhood associations. “Reassessment” provides interested parties with a rigorous, science-based counter-argument to those using “Critical Assessment” as a weapon against feral cats/TNR.

So, once you’ve had a look for yourself, please share generously! Together, we can—in keeping with the mission of Vox Felina—improve the lives of feral cats through a more informed, conscientious discussion of feral cat issues in general, and TNR in particular.

Download PDF

Adult Supervision Required

“Have you seen this already? This is awful.”

That’s what somebody posted on the Vox Felina Facebook page late last night—along with a link to an MSNBC news story. The headline was an attention-getter, no doubt about it: “Report: Kill feral cats to control their colonies.”

But beyond that, MSNBC had practically no details. A little digging around, however, led me to New England Cable News (NECN), which has the complete story.

“The report began in an undergraduate wildlife management class, with students writing reports on feral cats based on existing research. The students’ professor and other [University of Nebraska] researchers then compiled the report from the students’ work.” [1]

“Feral Cats and Their Management” claims, straightforwardly enough, to provide “research-based information on the management of feral cats.” [2] Management, in this case, meaning—as is so often the case in such contexts—killing, extermination, eradication, and so forth. Detailed advice is provided (e.g., “Body-gripping traps and snares can be used to quickly kill feral cats”).

And research? In this case, nothing more than a cursory review of all of the usual suspects: Coleman and Temple, Pamela Jo Hatley, Cole Hawkins, The Wildlife Society, Linda Winter. In other words, lots of Kool-Aid drinking.

It’s Like Science, Only Different
Among the research misinterpreted and/or misrepresented (none of which is cited in the text):

“As instinctive hunters, feral cats pose a serious threat to native wildlife, particularly birds.”

It’s no surprise that the authors of the report offer no evidence to support such a sweeping claim. “There are few if any studies,” write Mike Fitzgerald and Dennis Turner in their contribution to The Domestic Cat: The biology of its behaviour, “apart from island ones that actually demonstrate that cats have reduced bird populations.” [3]

Biologist C.J. Mead, reviewing the deaths of “ringed” (banded) birds reported by the British public, suggests that cats may be responsible for 6.2–31.3% of bird deaths. “Overall,” writes Mead, “it is clear that cat predation is a significant cause of death for most of the species examined.” Nevertheless, Mead concludes, “there is no clear evidence of cats threatening to harm the overall population level of any particular species… Indeed, cats have been kept as pets for many years and hundreds of generations of birds breeding in suburban and rural areas have had to contend with their predatory intentions.” [4]

The German zoologist Paul Leyhausen (1916–1998), who spent the bulk of his career studying the behavior of cats, found that cats, frustrated by the difficulties of catching them, “may soon give up hunting birds.” [5]

“During years in the field,” wrote Leyhausen, “I have observed countless times how cats have caught a mouse or a rat and just as often how they have stalked a bird. But I never saw them catch a healthy songbird that was capable of flying. Certainly it does happen, but, as I have said, seldom. I should feel sorry for the average domestic cat that had to live solely on catching birds.” [5]

“Cats kill an estimated 480 million birds per year (assuming eight birds killed per feral cat per year).”

Fitzgerald and Turner (whose work is not referenced in the report) argue that “we do not have enough information yet to attempt to estimate on average how many birds a cat kills each year.” [3] Though, of course, many studies have tried to do exactly that—few, it should be said, involve feral cats.

Unfortunately—and as I have pointed out time and time again—such work typically suffers from a range of methodological and analytical problems (e.g., statistical errors, small sample sizes, and inappropriate/baseless assumptions).

And—as with the UNL report—obvious bias.

“Estimates from Wisconsin indicate that between 500,000 and 8 million birds are killed by rural cats each year in that state…”

How anybody could misquote the numbers from the Wisconsin Study—easily the most widely circulated work on the subject—is a mystery. (On the other hand, the figures were, as Stanley Temple has said, “not actual data” [6] in the first place, so I suppose that does allow for some rather liberal interpretation.)

“The diets of well-fed house-based cats in Sweden consisted of 15 percent to 90 percent native prey, depending on availability.”

How important is it that the prey of feral cats is native, versus non-native? That’s a point of some debate—but not in this case. See, what Liberg actually wrote was this: “Most cats (80-85%) were house-based and obtained from 15 to 90% of their food from natural prey, depending on abundance and availability of the latter.” [7, emphasis mine] He was merely drawing the distinction between food provided by humans and any prey that cats might eat as food.

Liberg goes on to point out that the predation he documented did not, justify a conclusive assessment of the effects of cats on their prey populations, but… indicate[s] that cats by themselves were not limiting any of their prey.” [7] Even high rates of predation do not equate to population declines.

“In California, 67 percent of rodents, 95 percent of birds, and 100 percent of lizards brought home by cats were native species, and native birds were twice as likely to be seen in areas without cats.”

What looks to be truly damning evidence loses much of its impact when it’s seen in context. The reference to Crooks and Soulé’s 1999 paper, for example, omitted the sample size involved: “Identification of 68 prey items returned by cats bordering the fragments indicated that 67% of 26 rodents, 95% of 21 birds and 100% of 11 lizards were native species.” [8] It’s important to note, too, that these researchers asked residents to recall what kind of prey their cats returned—no prey items were collected—thereby raising questions about the accuracy of species attribution.

Furthermore, the cats involved with Crooks and Soulé’s study were all pet cats. How their habits compare with those of feral cats is an open question. Merritt Clifton of Animal People, an independent newspaper dedicated to animal protection issues, suggests, “feral cats appear to hunt no more, and perhaps less, than free-roaming pet cats. This is because, like other wild predators, they hunt not for sport but for food, and hunting more prey than they can eat is a pointless waste of energy.”

The second portion of the quote refers to Cole Hawkins’ PhD dissertation. Hawkins’ research methods and analysis are so problematic that the suggestion of a causal relationship between the presence of cats and the absence of birds (native or otherwise) is highly inappropriate (indeed, Hawkins scarcely investigates predation at all).

Among the key issues: Hawkins had no idea what the “cat” area of his study site was like before the cats were there; he merely assumes it was identical to the “no cat” area in terms of its fauna (though the two landscapes are actually quite different). It’s also interesting to note Hawkins’ emphasis on “the preference of ground feeding birds for the no-cat treatment” while downplaying the fact that five of the nine ground-feeding species included in the study showed no preference for either area. (For a more comprehensive analysis, please see my previous post on the subject.)

“…cats are the most important species in the life cycle of the parasite responsible for toxoplasmosis, and in 3 separate studies, most feral cats (62 percent to 80 percent) tested positive for toxoplasmosis.”

While cats are the “definitive host,” it’s important to note that “wild game can be a source of T. gondii infection in humans, cats, and other carnivores. Serologic data show that a significant number of feral pigs, bears, and cervids are exposed to T. gondii.” [9]

“Humans,” write Elmore et al., “usually become infected through ingestion of oocyst-contaminated soil and water, tissue cysts in undercooked meat, or congenitally. Because of their fastidious nature, the passing of non-infective oocysts, and the short duration of oocyst shedding, direct contact with cats is not thought to be a primary risk for human infection.” [10]

Toxoplasma gondii has been linked to the illness and death of marine life, primarily sea otters [11], prompting investigation into the possible role of free-roaming (both owned and feral) cats. [12, 13] It’s generally thought that oocysts (the mature, infective form of the parasite) are transferred from soil contaminated with infected feces to coastal waterways by way of freshwater run-off. [13]

However, a 2005 study found that 36 of 50 sea otters from coastal California were infected with the Type X strain of T. gondii [14], a type linked to wild felids (mountain lions and a bobcat, in this case), but not to domestic cats. [13] A recently published study from Germany seems to corroborate these findings. Herrmann et al. analyzed 18,259 fecal samples (all from pet cats) for T. gondii and found no Type X strain.  (It’s interesting to note, too, that only 0.25% of the samples tested positive for T. gondii). [15]

[NOTE: Please see follow-up post for additional information about cats and T. gondii.]

“Predation by cats on birds has an economic impact of more than $17 billion dollars [sic] per year in the U.S. The estimated cost per bird is $30, based on literature citing that bird watchers spend $0.40 per bird observed, hunters spend $216 per bird shot, and bird rearers spend $800 per bird released.”

According to this bizarre form of accounting, hunters value an individual bird more than 500 times as much as a birdwatcher does—suggesting, it seems, that dead birds are far more valuable than live birds. This is the kind of estimate that can be developed only through university (or perhaps government) research efforts.

Public Indecency
Stephen Vantassel, a wildlife damage project coordinator who worked on the study, said researchers were aware that some people would be ‘very offended that we offered any type of lethal control method.’ But he said the report was written for public consumption and wasn’t submitted to any science journals for publication.” [1]

For the record, Dr. Vantassel, I’m more offended by the way you’ve allowed such sloppy, grossly irresponsible work to pass for “research.” And the idea that such an undertaking is somehow acceptable because it’s meant for a mass audience is simply absurd!

Naturally, the American Bird Conservancy (ABC) embraced the report immediately, “with one official calling it ‘a must read for any community or government official thinking about what to do about feral cats.’” [1]

“‘Not surprisingly, the report validates everything American Bird Conservancy has been saying about the feral cat issue for many years—namely, TNR doesn’t work in controlling feral cat populations,’ Darin Schroeder, vice president of the Conservation Advocacy for American Bird Conservancy, said Tuesday.”

But validation requires far more than this report provides—beginning with a real interest in scientific inquiry and some basic critical thinking skills. And while we’re at it, a refresher in ethics wouldn’t hurt, either.

*     *     *

In my previous post, I’d indicated that my next post—this post—was going to focus on The American Bird Conservancy Guide to Bird Conservation. Obviously, something came up. Anyhow, the book will keep for a few more days…

Literature Cited
1. n.a. (2010) Report: Kill feral cats to control their colonieshttp://www.necn.com/11/30/10/Report-Kill-feral-cats-to-control-their-/landing_scitech.html?&blockID=3&apID=95afccc4d9564caf8e264f9d087f5732 Accessed December 1, 2010.

2. Hildreth, A.M., Vantassel, S.M., and Hygnstrom, S.E., Feral Cats and Their Managment. 2010, University of Nebraska-Lincoln Extension: Lincoln, NE. http://elkhorn.unl.edu/epublic/live/ec1781/build/ec1781.pdf

3. Fitzgerald, B.M. and Turner, D.C., Hunting Behaviour of domestic cats and their impact on prey populations, in The Domestic Cat: The biology of its behaviour, D.C. Turner and P.P.G. Bateson, Editors. 2000, Cambridge University Press: Cambridge, U.K.; New York. p. 151–175.

4. Mead, C.J., “Ringed birds killed by cats.” Mammal Review. 1982. 12(4): p. 183-186. http://dx.doi.org/10.1111/j.1365-2907.1982.tb00014.x

5. Leyhausen, P., Cat behavior: The predatory and social behavior of domestic and wild cats. Garland series in ethology. 1979, New York: Garland STPM Press.

6. Elliott, J. (1994, March 3–16). The Accused. The Sonoma County Independent, pp. 1, 10

7. Liberg, O., “Food Habits and Prey Impact by Feral and House-Based Domestic Cats in a Rural Area in Southern Sweden.” Journal of Mammalogy. 1984. 65(3): p. 424-432. http://www.jstor.org/stable/1381089

8. Crooks, K.R. and Soule, M.E., “Mesopredator release and avifaunal extinctions in a fragmented system.” Nature. 1999. 400(6744): p. 563.

9. Hill, D.E., Chirukandoth, S., and Dubey, J.P., “Biology and epidemiology of Toxoplasma gondii in man and animals.” Animal Health Research Reviews. 2005. 6(01): p. 41-61. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=775956&fulltextType=RA&fileId=S1466252305000034

10. Elmore, S.A., et al., “Toxoplasma gondii: epidemiology, feline clinical aspects, and prevention.” Trends in Parasitology. 26(4): p. 190-196. http://www.sciencedirect.com/science/article/B6W7G-4YHFWNM-1/2/2a468a936eb06649fde0463deae4e92f

11. Jones, J.L. and Dubey, J.P., “Waterborne toxoplasmosis – Recent developments.” Experimental Parasitology. 124(1): p. 10-25. http://www.sciencedirect.com/science/article/B6WFH-4VXB8YT-2/2/8f9562f64497fe1a30513ba3f000c8dc

12. Dabritz, H.A., et al., “Outdoor fecal deposition by free-roaming cats and attitudes of cat owners and nonowners toward stray pets, wildlife, and water pollution.” Journal of the American Veterinary Medical Association. 2006. 229(1): p. 74-81. http://avmajournals.avma.org/doi/abs/10.2460/javma.229.1.74

13. Miller, M.A., et al., “Type X Toxoplasma gondii in a wild mussel and terrestrial carnivores from coastal California: New linkages between terrestrial mammals, runoff and toxoplasmosis of sea otters.” International Journal for Parasitology. 2008. 38(11): p. 1319-1328. http://www.sciencedirect.com/science/article/B6T7F-4RXJYTT-2/2/32d387fa3048882d7bd91083e7566117

14. Conrad, P.A., et al., “Transmission of Toxoplasma: Clues from the study of sea otters as sentinels of Toxoplasma gondii flow into the marine environment.” International Journal for Parasitology. 2005. 35(11-12): p. 1155-1168. http://www.sciencedirect.com/science/article/B6T7F-4GWC8KV-2/2/2845abdbb0fd82c37b952f18ce9d0a5f

15. Herrmann, D.C., et al., “Atypical Toxoplasma gondii genotypes identified in oocysts shed by cats in Germany.” International Journal for Parasitology. 2010. 40(3): p. 285–292. http://www.sciencedirect.com/science/article/B6T7F-4X1J771-2/2/dc32f5bba34a6cce28041d144acf1e7c

The Work Speaks—Part 5: Jumping to Conclusions

In April, Conservation Biology published a comment authored by Christopher A. Lepczyk, Nico Dauphiné, David M. Bird, Sheila Conant, Robert J. Cooper, David C. Duffy, Pamela Jo Hatley, Peter P. Marra, Elizabeth Stone, and Stanley A. Temple. In it, the authors “applaud the recent essay by Longcore et al. (2009) in raising the awareness about trap-neuter-return (TNR) to the conservation community,” [1] and puzzle at the lack of TNR opposition among the larger scientific community:

“…it may be that conservation biologists and wildlife ecologists believe the issue of feral cats has already been studied enough and that the work speaks for itself, suggesting that no further research is needed.”

In fact, “the work”—taken as a whole—is neither as rigorous nor as conclusive as Lepczyk et al. suggest. And far too much of it is plagued by exaggeration, misrepresentations, errors, and obvious bias. In Part 4 of this series, I discussed how feral cat/TNR researchers often misuse averages to characterize skewed distributions, and how that error overestimates the impact of free-roaming cats on wildlife.

For the next few posts, I’m going to critique three of the studies most often cited by these researchers, starting with Cole Hawkins’ 1998 PhD dissertation, Impact of a subsidized exotic predator on native biota: Effect of house cats (Felis catus) on California birds and rodents. I mentioned Hawkins’ dissertation previously, but only briefly. Here, I’ll take a closer look, paying particular attention to how he gets from his results to his rather dubious conclusions.

The Study
Hawkins’ two-year study was conducted in Alameda County, CA, spread across two adjacent parks. He started by designating a “cat area” (where, nearby, free-roaming cats were being fed) and a “no-cat area” (where no cats were being fed), and then designated “rodent grids” (nine locations used for trapping and counting rodents) and walking transects (from which bird surveys were conducted) in each area. Hawkins then compared the number of birds and rodents detected in the two areas.

Among Hawkins’ conclusions:

“The differences observed in this study were the results of the cat’s predatory behavior.” [2] (It should be noted that Hawkins tempered this assertion in his 1999 article summarizing the work: “The differences observed in this study may have been due to the cats’ predatory behavior.” [3] (italics mine))

And this:

“The presence of cats in this study area already has caused a shift in the composition of the rodent community; it is possible that a shift in the larger biotic community could follow.”

And, finally:

“It is not prudent to manage for wildlife and allow cat feeding in the same parks.”

Unfair Comparisons
But Hawkins’ findings are insufficient to supports such claims; indeed, his methodology doesn’t allow for them. Hawkins has no idea what the cat area was like prior to his arrival; he merely assumes the populations of birds and rodents would have been identical to those found at the no-cat area, and makes his comparisons accordingly. In fact, there are a number of factors that indicate that the two areas are not as comparable as Hawkins suggests:

  • The cat area was almost a peninsula, with a lake on one side and a residential area (within 0.5 km) on the other. The no-cat area, on the other hand, was located largely in the interior of the parks.
  • Hawkins notes that there were more people in the cat area (of­ten twice as many as were observed at the no-cat area), but dismisses the possibility that their presence may have influenced the numbers of birds and rodents he observed there.
  • The habitat along the 2.2 km transects from which bird counts were conducted varied considerably between the two areas. Compared to the no-cat area, the cat area had 31% less chaparral, 183% more trees, 52% less grass, and 240% more “modified” habitat (it’s not clear what Hawkins means by “modified,” but I assume it refers to habitat that reflects significant human impact).
  • Finally, the presence of pesticides may have played a role. According to a 2002 report (the earliest I was able to find) from the East Bay Regional Park District, “The focus of Lake Chabot’s weed control efforts are vegetation reduction within the two-acre overflow parking lot, picnic sites and firebreaks around park buildings, corp. yard, service yard, and the Lake Chabot classroom.” [4] And it’s clear from Hawkins’ 1999 article that the cat area did include picnic sites: “…over half of the cat scat in this study was collected under and around picnic tables.” [3] Now, Hawkins’ fieldwork was done in 1995 and 1996, but if there was any pesticide use during the study period, it may have affected the results—especially if the pesti­cide was distributed differently across the two areas.

Cats and Birds
“Almost twice as many birds were seen on the no-cat transect as on the cat transect,” writes Hawkins. But it’s not quite as simple as that—the details reveal a rather complex, often uneven count over the course of the study. Nevertheless—and despite the differences between the two areas—Hawkins’ only explanation is the cats. This is especially true for ground-feeders:

The preference of ground feeding birds for the no-cat treatment was striking; for ex­ample, California quail were seen almost daily in the no-cat area, whereas they were never seen in the cat area.

What’s more striking to me is the fact that five of the nine ground-feeding species included in the study showed no preference for either area. But Hawkins scarcely acknowledges the point, and doesn’t even hint at an explanation. “Birds that were known to nest on or near the ground or in shrubs and vines ≤ 1.5 m in height” also showed no preference between the two areas (though no nest counts were conducted).

The picture painted by Hawkins is that bird species absent from the cat area represent species killed off by the cats. But it’s generally accepted that cats are opportunistic hunters, catching whatever prey is readily available and easily caught. [5–8] Fitzgerald and Turner, for ex­ample, argue that “domestic cats (both house and feral ones) are best described as generalist resident preda­tors, exploiting a wide range of prey, and able to switch readily from one prey to another.” [9] So, how is it that some species were present at the cat site while others were not? Again, Hawkins offers no explanation.

In fact, it’s clear from Hawkins’ study that the cats aren’t much of threat at all to the birds—even vulnerable ground-feeding and ground-nesting species—in the cat area. Of the 120 scat samples found by searching the cat area, “65% were found to contain rodent hair and 4% feathers.” [2] This finding comes toward the end of the study, when the cat population was at its greatest—and still, only 4% contained feathers. And this could easily represent one cat and one bird.

One final point about the birds: Hawkins suggests (without explanation) that the olive-sided flycatcher, American robin, and Stellar’s jay—all of which showed no preference for either the no-cat area or the cat area—may have been responding to a “specialized habitat.” Could it be that the birds not seen in the cat area were also responding to a specialized habitat—by “migrating” to a place with less human activity (e.g., the no-cat area), for example? Once again, Hawkins has no comment.

Cats and Rodents
The fact that scats indicated rodents were predated to a greater extent than birds is hardly surprising [5, 6, 9, 10], but it should be noted the 65% figure represents the frequency of occurrence, and not a predation rate (a topic I address in greater detail here).

Hawkins’ analysis didn’t reveal whether the rodent hair was that of deer mice, harvest mice (both of which were found less often in the cat area than in the no-cat area), house mice (found more often in the cat area), or California voles (which showed no preference for either area). In any case, it’s not clear that the cats were responsible for the presence or absence of any of these rodent species. Again, the selective dietary habits suggested by Hawkins simply don’t fit with the domestic cat’s profile as a “generalist resident predator.”

Two additional points that might explain the differences Hawkins observed concern the habitat of the cat area. First, there’s the nearby lake and residences—potential sources of pollution that could affect nearby plant and animal life. Secondly, there’s the issue of possible pesticide use mentioned previously. As I say, it’s largely conjecture on my part; at the same time, though, it’s easy to imagine its potential impact on small mammals (and ground-feeding birds, for that matter).

Finally, Hawkins suggests that certain bird species were responding to specialized habitat—perhaps the rodents were simply doing the same.

Cats
Hawkins used track plates (baited devices that detect the presence of mammals by way of preserved “footprints”) for “estimating a relative cat presence index,” but found only one cat track in 200 track plate nights. And, “in 560 days of exposure, no scat was found in any of the sand boxes.” [2] Now, the cats were seen at feeding stations and on the rodent grids of the cat area—as many as 26 during a one-week period toward the end of the study. But clearly, they were not where Hawkins was expecting them to be. If, after two years at the study site, Hawkins was unable to get a better handle on the presence of the cats, how can he be so sure of their behavior when it comes to predation?

If, as Hawkins argues, the differences observed between the two areas are a result of the cats’ predatory behavior, then one would expect the number of birds and rodents to decrease as the number of cats increases. Yet, Hawkins’ findings don’t bear this out.

And then there are the unanswered questions about the cats—for example:

  • Where did these cats come from—were they illegally dumped, the result of nearby residents’ unsterilized cats breeding? Did they belong to the residents?
  • Were the cats sterilized? (Their increasing numbers would suggest that they weren’t.)
  • Were these cats part of a managed TNR colony? (Local newspaper reports indicate a long-standing battle between TNR advocates and opponents. [11–13])

Considering the central role these cats played in Hawkins’ two-year study, he knew surprisingly little about their behavior—including various factors that surely had an impact on his findings.

*     *     *

In their recent comment, Lepczyk et al. suggest that conservation biologists and wildlife ecologists “look to the evolutionary biology community” [1] for an example of how to influence policy. For feral cat/TNR opponents interested in shaping policy, it seems Hawkins’ study has become quite popular. [14–17] Actually, Nico Dauphiné and Robert J. Cooper take its already-tenuous claims one step further, citing Hawkins’ work (actually a 2004 conference paper that summarizes his dissertation [18]) as evidence that “the continuous predation pressure exerted by exotic predators in exponentially high densities can and has resulted in numerous local extinctions of continental land birds.” [8]

But is Hawkins’ methodology one that evolutionary biologists would advocate—or even recognize? Not likely.

Hawkins draws conclusions—infers important causal relationships—without any evidence of what “pre-treatment” conditions were like. And ignores entirely his own findings when they contradict his conclusions. Rather than beginning his inquiry with questions to answer, it seems Hawkins had his answer from the outset. At best, his work is an interesting pilot study—generating research questions for a more rigorous, less biased investigation.

References
1. Lepczyk, C.A., et al., “What Conservation Biologists Can Do to Counter Trap-Neuter-Return: Response to Longcore et al.” Conservation Biology. 2010. 24(2): p. 627-629.

2. Hawkins, C.C., Impact of a subsidized exotic predator on native biota: Effect of house cats (Felis catus) on California birds and rodents. 1998, Texas A&M University.

3. Hawkins, C.C., Grant, W.E., and Longnecker, M.T., “Effects of Subsidized House Cats on California Birds and Rodents.” Transactions of the Western Section of the Wildlife Society. 1999. 35: p. 29–33.

4. Brownfield, N.T., 2002 Annual Analysis of Pesticide Use East Bay Regional Park District. 2003, East Bay Regional Park District. www.ebparks.org/files/stew_pest_report_02.pdf

5. Barratt, D.G., “Predation by house cats, Felis catus (L.), in Canberra, Australia. II. Factors affecting the amount of prey caught and estimates of the impact on wildlife.” Wildlife Research. 1998. 25(5): p. 475–487.

6. Fitzgerald, B.M., Diet of domestic cats and their impact on prey populations, in The Domestic cat: The biology of its behaviour, D.C. Turner and P.P.G. Bateson, Editors. 1988, Cambridge University Press: Cambridge; New York. p. 123–147.

7. Lepczyk, C.A., Mertig, A.G., and Liu, J., “Landowners and cat predation across rural-to-urban landscapes.” Biological Conservation. 2003. 115(2): p. 191-201.

8. Dauphiné, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2010. p. 205–219.

9. Fitzgerald, B.M. and Turner, D.C., Hunting Behaviour of domestic cats and their impact on prey populations, in The Domestic Cat: The biology of its behaviour, D.C. Turner and P.P.G. Bateson, Editors. 2000, Cambridge University Press: Cambridge, U.K.; New York. p. 151–175.

10. Woods, M., McDonald, R.A., and Harris, S., “Predation of wildlife by domestic cats Felis catus in Great Britain.” Mammal Review. 2003. 33(2): p. 174-188.

11. Chui, G., Stray Cats Live Harsh Lives in Area Parks, in San Jose Mercury News. 1985. p. 1

12. Bogue, G., Those Poor Cats Need a Human Assist, in Contra Costa Times. 1997: Walnut Creek, CA. p. A02

13. n.a., Spring controversy: What to do with feral cats?, in San Mateo Daily Journal, The (CA). 2001.

14. Longcore, T., Rich, C., and Sullivan, L.M., “Critical Assessment of Claims Regarding Management of Feral Cats by Trap–Neuter–Return.” Conservation Biology. 2009. 23(4): p. 887–894.

15. ABC, Domestic Cat Predation on Birds and Other Wildlife. n.d., American Bird Conservancy: The Plains, VA. www.abcbirds.org/abcprograms/policy/cats/materials/predation.pdf

16. Winter, L. and Wallace, G.E., Impacts of Feral and Free-Ranging Cats on Bird Species of Conservation Concern, G.E. Wallace, Editor. 2006, American Bird Conservancy. www.abcbirds.org/newsandreports/NFWF.pdf

17. Ash, S.J. and Adams, C.E., “Public Preferences for Free-Ranging Domestic Cat (Felis catus) Management Options.” Wildlife Society Bulletin. 2003. 31(2): p. 334–339.

18. Hawkins, C.C., Grant, W.E., and Longnecker, M.T. Effect of house cats, being fed in parks, on California birds and rodents. in Proceedings Of The 4th International Symposium On Urban Wildlife Conservation. 2004. Tucson, AZ: University of Arizona. http://cals.arizona.edu/pubs/adjunct/snr0704/snr07042l.pdf

The Work Speaks—Part 3: Predatory Blending?

In April, Conservation Biology published a comment authored by Christopher A. Lepczyk, Nico Dauphiné, David M. Bird, Sheila Conant, Robert J. Cooper, David C. Duffy, Pamela Jo Hatley, Peter P. Marra, Elizabeth Stone, and Stanley A. Temple. In it, the authors “applaud the recent essay by Longcore et al. (2009) in raising the awareness about trap-neuter-return (TNR) to the conservation community,” [1] and puzzle at the lack of TNR opposition among the larger scientific community:

“…it may be that conservation biologists and wildlife ecologists believe the issue of feral cats has already been studied enough and that the work speaks for itself, suggesting that no further research is needed.”

In fact, “the work”—taken as a whole—is neither as rigorous nor as conclusive as Lepczyk et al. suggest. And far too much of it is plagued by exaggeration, misrepresentations, errors, and obvious bias. In a previous post, I presented examples of researchers drawing big conclusions from small sample sizes. Here, I’ll discuss the important distinction between compensatory and additive predation—a point too often left out of the feral cat/TNR discussion.

Sins of Omission
Focusing on the number of prey injured or killed by cats, without also recognizing that there are different types of predation, implies that each and every bird, mammal, reptile, etc. is destined to be part of its species’ breeding population. Of course, that’s not at all how things work out in the natural world—with or without predation by cats.

And yet, numerous studies [2-10], reviews [11], and other published papers [12-14] fail to acknowledge the critical difference between compensatory predation (in which prey would have died even in the absence of a particular predator, due to illness, starvation, other predators, etc.) and additive predation (in which healthy prey are killed). It’s the difference between, as Beckerman et al. put it, the “doomed surplus hypothesis” and the “hapless survivor hypothesis.” [15]

This is a critical point when it comes to connecting predation rates (from cats or any other predator) to population impacts. The more additive the predation, the greater the potential impact on population numbers. Purely compensatory predation, on the other hand, is less likely to affect overall populations. Of course, the connection is seldom so simple and direct, and a number of factors (e.g., habitat area and type, base population numbers, etc.) influence the ultimate outcome—making it quite difficult to tease out specific causal relationships. Nevertheless, if we want to better understand the impact of free-roaming cats on wildlife, we cannot ignore the distinction between—and inherent implications of—these two types of predation.

Honorable Mentions
Although Churcher and Lawton failed to mention the distinction between compensatory and additive predation in their now-classic “English village” study [4], Churcher later suggested that their findings were largely in the compensatory category: “If the cats weren’t there, something else would be killing the sparrows or otherwise preventing them from breeding.” [16]

Woods et al. don’t address the topic directly, but warn against drawing direct connections between predation numbers and potential effects on population dynamics:

“Our estimates of the total numbers of animals brought home by cats throughout Britain should be treated with requisite caution and these figures do not equate to an assessment of the impact of cats on wildlife populations.” [3]

Unfortunately, other researchers have used this study to make exactly that connection. In “Critical Assessment,” for example, Longcore et al. cite Woods et al. (along with Lepczyk et al. 2003, the subject of a future post) when they write, “evidence indicates that cats can play an important role in fluctuations of bird populations.” [11]

Under-Compensating?
In their 2008 study, Baker et al. found that “birds killed by cats in this study had significantly lower fat and pectoral muscle mass scores than those killed by collisions,” [17] suggesting that they may have been among the “doomed surplus” portion of the population. Similar results were reported eight years earlier by Møller and Erritzøe, who found that “small passerine birds falling prey to cats had spleens that were significantly smaller than those of conspecifics that died for other reasons,” concluding ultimately that the birds killed by cats “often have a poor health status.” [18]

But Baker et al. express caution about their findings:

“…the distinction between compensatory and additive mortality does… become increasingly redundant as the number of birds killed in a given area increases: where large numbers of prey are killed, predators would probably be killing a combination of individuals with poor and good long-term survival chances.”

Whatever their concerns, it must be noted that Baker et al. inflated their predation numbers by a factor of 3.3 on the basis of Kays and DeWan’s dubious conclusions [9] (which I discussed in some detail previously). Doing so raises considerable doubts about any level of “redundancy,” as well the authors’ suggestion that cat predation in the area might be “creating a dispersal sink for more productive neighboring areas.” [19] (Such “sinks” can occur when predation outstrips local prey populations, requiring that prey be “recruited” from surrounding areas.)

Implications
Given all the work that’s been done on cat predation, one might expect the subject of compensatory predation to be addressed more fully and more often. By omitting this important issue from the feral cat/TNR discussion, researchers portray a situation both simpler and harsher (in terms of what it implies about the impact of free-roaming cats) than reality suggests. Whether or not such omissions are intentional, I cannot say. I do, however, find it curious—what’s included compared to what’s left out, and by whom.

References
1. Lepczyk, C.A., et al., “What Conservation Biologists Can Do to Counter Trap-Neuter-Return: Response to Longcore et al.” Conservation Biology. 2010. 24(2): p. 627-629.

2. Coleman, J.S. and Temple, S.A., On the Prowl, in Wisconsin Natural Resources. 1996, Wisconsin Department of Natural Resources: Madison, WI. p. 4–8. http://dnr.wi.gov/wnrmag/html/stories/1996/dec96/cats.htm

3. Woods, M., McDonald, R.A., and Harris, S., “Predation of wildlife by domestic cats Felis catus in Great Britain.” Mammal Review. 2003. 33(2): p. 174-188.

4. Churcher, P.B. and Lawton, J.H., “Predation by domestic cats in an English village.” Journal of Zoology. 1987. 212(3): p. 439-455.

5. Coleman, J.S. and Temple, S.A., “Rural Residents’ Free-Ranging Domestic Cats: A Survey.” Wildlife Society Bulletin. 1993. 21(4): p. 381–390.

6. Coleman, J.S. and Temple, S.A., Effects of Free-Ranging Cats on Wildlife: A Progress Report, in Fourth Eastern Wildlife Damaage Control Conference. 1989: University of Nebraska—Lincoln. p. 8–12. http://digitalcommons.unl.edu/ewdcc4/7

7. Hawkins, C.C., Impact of a subsidized exotic predator on native biota: Effect of house cats (Felis catus) on California birds and rodents. 1998. PhD Dissertation, Texas A&M University.

8. Hawkins, C.C., Grant, W.E., and Longnecker, M.T., “Effects of Subsidized House Cats on California Birds and Rodents.” Transactions of the Western Section of the Wildlife Society. 1999. 35: p. 29–33.

9. Kays, R.W. and DeWan, A.A., “Ecological impact of inside/outside house cats around a suburban nature preserve.” Animal Conservation. 2004. 7(3): p. 273-283.

10. Lepczyk, C.A., Mertig, A.G., and Liu, J., “Landowners and cat predation across rural-to-urban landscapes.” Biological Conservation. 2003. 115(2): p. 191-201.

11. Longcore, T., Rich, C., and Sullivan, L.M., “Critical Assessment of Claims Regarding Management of Feral Cats by Trap–Neuter–Return.” Conservation Biology. 2009. 23(4): p. 887–894.

12. Dauphiné, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2010. p. 205–219

13. Coleman, J.S., Temple, S.A., and Craven, S.R., Cats and Wildlife: A Conservation Dilemma. 1997, University of Wisconsin, Wildlife Extension. http://forestandwildlifeecology.wisc.edu/wl_extension/catfly3.htm

14. Andersen, M.C., Martin, B.J., and Roemer, G.W., “Use of matrix population models to estimate the efficacy of euthanasia versus trap-neuter-return for management of free-roaming cats.” Journal of the American Veterinary Medical Association. 2004. 225(12): p. 1871-1876.

15. Beckerman, A.P., Boots, M., and Gaston, K.J., “Urban bird declines and the fear of cats.” Animal Conservation. 2007. 10(3): p. 320-325.

16. n.a., What the Cat Dragged In, in Catnip. 1995, Tufts University School of Veterinary Medicine: Boston, MA. p. 4–6

17. Baker, P.J., et al., “Cats about town: is predation by free-ranging pet cats Felis catus likely to affect urban bird populations? Ibis. 2008. 150: p. 86-99.

18. Møller, A.P. and Erritzøe, J., “Predation against birds with low immunocompetence.” Oecologia. 2000. 122(4): p. 500-504.

The Work Speaks—Part 2: Sample-Minded Research

In April, Conservation Biology published a comment authored by Christopher A. Lepczyk, Nico Dauphiné, David M. Bird, Sheila Conant, Robert J. Cooper, David C. Duffy, Pamela Jo Hatley, Peter P. Marra, Elizabeth Stone, and Stanley A. Temple. In it, the authors “applaud the recent essay by Longcore et al. (2009) in raising the awareness about trap-neuter-return (TNR) to the conservation community,” [1] and puzzle at the lack of TNR opposition among the larger scientific community:

“…it may be that conservation biologists and wildlife ecologists believe the issue of feral cats has already been studied enough and that the work speaks for itself, suggesting that no further research is needed.”

In fact, “the work”—taken as a whole—is neither as rigorous nor as conclusive as Lepczyk et al. suggest. And far too much of it is plagued by exaggeration, misrepresentations, errors, and obvious bias. In my previous post, I presented examples of researchers “reinterpreting” the work of others to better fit their own arguments. For the next few posts, I’ll focus on some of the major flaws in the feral cat/TNR research itself—beginning with the reliance, by some, on small sample sizes.

Size Does Matter
There are all kinds of reasons for small sample sizes, perhaps the most common being limited resources (e.g., time, funding, etc.). And they are often a fact of life in real-world research, where investigators have less control over conditions than they might in a laboratory environment. Studies employing small sample sizes are not without value; indeed, they often serve as useful pilot studies for future, more comprehensive, work. They do become problematic, though, when broad conclusions are drawn from their results. Below are three (among many!) examples of such studies.

Impressive Estimates
In “Free-Ranging Domestic Cat Predation on Native Vertebrates in Rural and Urban Virginia,” [2] published in 1992, the authors estimated that the state’s 1,048,704 cats were killing between 3,146,112 and 26,217,600 songbirds each year. “This number,” they note, “is certainly inaccurate to some degree, although the estimates are impressive.” [2] Impressive? I suppose. Maybe incredible is more fitting—since the study from which they were derived included exactly five cats, four “urban” and one “rural.”

Mitchell and Beck acknowledged “the limitations of extrapolation to large areas from relatively small data sets such as ours,” suggesting that their work was intended to provoke future “careful and detailed studies that can reveal truer estimates of the impact of this introduced species.” Hawkins [3] and Dauphiné and Cooper [4], however, seem to take them at their word, regardless of any disclaimers.

Many Cats, Multiple Seasons
In a recent study on Catalina Island, the researchers “examined the home-range behavior and movements of sterilized and intact radiocollared feral cats living in the interior” [5] of the island. Although Guttilla and Stapp concede that “sample sizes, especially for males, were relatively low” despite having “tracked many cats across multiple seasons,” they nevertheless come to some rather dramatic conclusions. Among them: “sterilization likely would not reduce the impact of feral cats on native prey.” [5]

So what do the authors mean by many and multiple? Actually, there were just 27 cats in the study (of an estimated 614–732 on the island). “Four cats were tracked during all four seasons, 9 cats were tracked for three consecutive seasons, 4 cats were tracked for 2 consecutive seasons, and the remaining cats were tracked for 1 season.” [5] And these numbers were effectively cut in half, because the researchers were comparing sterilized and non-sterilized cats. At best, this is a pilot study—though it’s already morphed into something more substantial in the mainstream media.

Myth vs. Math
In their 2004 study, “Ecological Impact of Inside/Outside House Cats Around a Suburban Nature Preserve,” Kays and DeWan observed hunting cats, concluding that their kill rate (13%) is “3.3 times greater than the rate estimated from prey brought home.” [6] Not surprisingly, this figure has been used as an instant multiplier (much in the same way William George’s work has been misused) for researchers interested in “correcting” (inflating?) prey numbers. [4, 7-11]

But this ratio, 3.3, hinges on the hunting behaviors of just 24 cats—12 that returned prey home, and another 12 (11 pets and 1 feral) that were observed hunting for a total of 181 hours (anywhere from 4.8–46.5 hours per cat). It’s interesting to note that the cat observed the most (46.5 hours) was only a year old—the youngest of the 12 observed, and likely the most active hunter. This factor alone could have had a significant influence on the outcome of the study.

Also, as several studies have shown [7,8,12,13], the distribution of prey catches tends to be highly skewed (many cats catch few/no prey, while a few catch a lot). In other words, the distribution is not the familiar bell curve at all—making it inappropriate to use a simple average for calculating estimations (a topic I’ll address in detail later). What’s more, with only 12 cats being monitored, how can we be sure their behaviors accurately represent any real distribution at all?

But the key to their calculation is the average time spent outdoors. This, too, tends to be a highly skewed distribution [14, 15], although—curiously—Kays and DeWan’s data suggest otherwise. By way of example, a 2003 survey conducted by Clancy, Moore, and Bertone [15] revealed that nearly half of the cats with outdoor access were outside for two or fewer hours a day. And 29% were outdoors for less than an hour each day. A survey conducted by the American Bird Conservancy revealed similar behavior, reporting that “35% keep their cats indoors all of the time” and “31% keep them indoors mostly with some outside access.” [14]

Kays and DeWan’s average of 8.35 hours/day, then, seems rather out of line with other studies. This, in addition to a number of unknowns (e.g., influence of time of day/night on hunting success, actual time spent hunting by each cat, etc.) raises serious questions about their conclusions.

By way of comparison, using an average of 2.5 hours/day (which is not out of line with the surveys described above) would yield a ratio of 1:1. In other words, no difference between predation rates predicted by actual hunting observation and those predicted by way of prey returned home. Which is not to say that I agree with Kays and DeWan’s underlying methods—we don’t know the possible effects of seasonal variation, for example, or differences in habitat. I’m only pointing out how sensitive this one factor—with its enormous consequences—is to the amount of time cats actually spend outdoors (and, just to introduce one more complication: I’d be very surprised if the amount of outdoor time cats spend hunting is normally distributed; it, too, is probably skewed).

Ironically, while the authors express disappointment that “biologists have rarely sampled both cat and prey populations in such a way that direct effects on prey populations can be shown,” [6] they seem to have had no misgivings about how their work—suffering from its own sampling issues—might be used to misrepresent those same effects.

*     *     *

Next, I’ll discuss the difference between compensatory and additive predation, and how that affects predictions of feral cat impacts on wildlife.

References
1. Lepczyk, C.A., et al., “What Conservation Biologists Can Do to Counter Trap-Neuter-Return: Response to Longcore et al.” Conservation Biology. 2010. 24(2): p. 627-629.

2. Mitchell, J.C. and Beck, R.A., “Free-Ranging Domestic Cat Predation on Native Vertebrates in Rural and Urban Virginia.” Virginia Journal of Science. 1992. 43(1B): p. 197–207.

3. Hawkins, C.C., Impact of a subsidized exotic predator on native biota: Effect of house cats (Felis catus) on California birds and rodents. 1998. PhD Dissertation, Texas A&M University.

4. Dauphiné, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2010. p. 205–219

5. Guttilla, D.A. and Stapp, P., “Effects of sterilization on movements of feral cats at a wildland-urban interface.” Journal of Mammalogy. 2010. 91(2): p. 482-489.

6. Kays, R.W. and DeWan, A.A., “Ecological impact of inside/outside house cats around a suburban nature preserve.” Animal Conservation. 2004. 7(3): p. 273-283.

7. Baker, P.J., et al., “Impact of predation by domestic cats Felis catus in an urban area.” Mammal Review. 2005. 35(3/4): p. 302-312.

8. Baker, P.J., et al., “Cats about town: is predation by free-ranging pet cats Felis catus likely to affect urban bird populations? Ibis. 2008. 150: p. 86-99.

9. van Heezik, Y., et al., “Do domestic cats impose an unsustainable harvest on urban bird populations? Biological Conservation. 143(1): p. 121-130.

10. Nelson, S.H., Evans, A.D., and Bradbury, R.B., “The efficacy of collar-mounted devices in reducing the rate of predation of wildlife by domestic cats.” Applied Animal Behaviour Science. 2005. 94(3-4): p. 273-285.

11. MacLean, M.M., et al., “The usefulness of sensitivity analysis for predicting the effects of cat predation on the population dynamics of their avian prey.” Ibis. 2008. 150(Suppl. 1): p. 100-113.

12. Churcher, P.B. and Lawton, J.H., “Predation by domestic cats in an English village.” Journal of Zoology. 1987. 212(3): p. 439-455.

13. Woods, M., McDonald, R.A., and Harris, S., “Predation of wildlife by domestic cats Felis catus in Great Britain.” Mammal Review. 2003. 33(2): p. 174-188.

14.  ABC, Human Attitudes and Behavior Regarding Cats. 1997, American Bird Conservancy: Washington, DC. http://www.abcbirds.org/abcprograms/policy/cats/materials/attitude.pdf

15. Clancy, E.A., Moore, A.S., and Bertone, E.R., “Evaluation of cat and owner characteristics and their relationships to outdoor access of owned cats.” Journal of the American Veterinary Medical Association. 2003. 222(11): p. 1541-1545.