Inside Job

Results from the American Pet Products Association’s 2009­­–2010 National Pet Owners Survey suggest that cats in this country are spending more time indoors than ever before. Although the proportion of owners keeping their cats inside at night has remained relatively steady since 1998 (at approximately 66%), their has been a 14% increase in daytime confinement (from 56% to 64%) over the same period. [1]

Indoor&Outdoor Access-APPA

It must be noted that owners were asked where they usually kept their cat(s), thereby raising some doubts about the accuracy of their responses. (There are actually two issues here: first is the level of truthfulness—did owners, intentionally or not, provide accurate information? But there is also the obvious ambiguity surrounding the term usually.) Nevertheless, these results correspond reasonably well with those of two earlier surveys: one commissioned by the American Bird Conservancy (ABC) in 1997, [2] the other conducted by Clancy et al. in 2001 [3] (the only other surveys I’ve found that investigated this issue specifically).

The ABC’s study (in which 250 cat owners participated in a telephone survey) indicated that “35% keep their cats indoors all of the time,” while “31% keep them indoors mostly with some outside access.” [2]

The 2001 survey included 168 cat owners, each of whom was part of the Feline Health Study, conducted at the Foster Hospital for Small Animals, Cummings School of Veterinary Medicine, Tufts University. Sixty percent of these cats were “strictly indoor cats,” while 40% “had some level of outdoor access.” [3] Probing further, Clancy et al. discovered that nearly half of the cats with outdoor access were outside for two or fewer hours a day. And 29% of them were outdoors for less than an hour each day. [3]

Considering the differences in sampling (most notably the fact that participants in the 2001 survey were all clients of a veterinary hospital, whereas APPA survey results for 2000 indicate that 27% of cat owners did not visit the vet in the previous 12 months), and the inherent uncertainty surrounding the terms mostly, usually, and some, the results of these three surveys are remarkably similar.

Counting Cats
Such findings are critical for developing accurate estimates of the number of birds killed by cats (assuming a reasonable level of accuracy is achievable, given the complexity of the issue). Simply put, cats that don’t go outside can’t kill birds.

Recognizing this, some researchers have inflated their figures for cats allowed outdoors. [4–6]

Dauphiné and Cooper, [6] for instance, cite the APPA’s 2007–2008 survey when referring to the number of owned cats in the U.S., but either ignored or overlooked its findings about confinement: 63% of owners reported that they kept their cat(s) indoors during the day, 70% during the night. (It’s also possible that the authors consulted only the APPA’s online summary, which probably didn’t include this information.)

By contrast, Dauphiné and Cooper claim that 65% of pet cats “are free-ranging outdoor cats for at least some portion of the day,” [6] citing not the APPA survey, but Linda Winter’s 2004 paper, “Trap-neuter-release programs: the reality and the impacts” (which can be downloaded here). Indeed, Winter, the former director of the ABC’s Cats Indoors! campaign, had suggested as much—misrepresenting the findings of a study commissioned by her own organization:

“A 1997 nationwide random telephone survey indicated that 66% of cat owners let their cats outdoors some or all of the time.” [7]

Double the proportion of cats allowed outdoors, and—just like that—the number of birds killed by pet cats doubles too. (Dauphiné and Cooper actually go much further, employing some grossly inflated predation rates as well.)

Counting Birds
Of course, such estimates do not necessarily relate directly to population impacts. The predation may be largely compensatory, for example; and there are source-sink dynamics to be considered as well.

Nevertheless, researchers persist—more often, it seems, in pursuit of staggering, media-friendly figures than a better understanding of what’s actually going on (e.g., Dauphiné and Cooper’s bumper-sticker-worthy “one billion birds”). As a result, the scientific literature is plagued with some rather spectacular failures where predation numbers are concerned (e.g., The Wisconsin Study, Christopher Lepczyk’s dissertation, Carol Fiore’s thesis, etc.).

*     *     *

The surprising level of agreement among the three “outdoor access” studies provides researchers a rare opportunity to agree among themselves. Which, in turn, could move us closer to an honest debate of the larger issues—arguing about which action is most appropriate, for instance, rather than about whose numbers are most valid.

Despite how results of these surveys have been—as recently as last year—overlooked, ignored, and misrepresented, I remain cautiously optimistic. As Patronek has suggested, “predation of songbirds tends to be noticed because it takes place during the day.” [8] It’s time predation research received the same kind of visibility. Sunlight, after all, is said to be the best of disinfectants.

Note: There is a an amendment to this post here.

Literature Cited
1. APPA, 2009–2010 APPA National Pet Owners Survey. 2009, American Pet Products Association: Greenwich, CT.

2. ABC, Human Attitudes and Behavior Regarding Cats. 1997, American Bird Conservancy: Washington, DC.

3. Clancy, E.A., Moore, A.S., and Bertone, E.R., “Evaluation of cat and owner characteristics and their relationships to outdoor access of owned cats.” Journal of the American Veterinary Medical Association. 2003. 222(11): p. 1541-1545.

4. Coleman, J.S. and Temple, S.A., On the Prowl, in Wisconsin Natural Resources. 1996, Wisconsin Department of Natural Resources: Madison, WI. p. 4–8.

5. Lepczyk, C.A., Mertig, A.G., and Liu, J., “Landowners and cat predation across rural-to-urban landscapes.” Biological Conservation. 2003. 115(2): p. 191-201.

6. Dauphiné, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2009. p. 205–219.

7. Winter, L., “Trap-neuter-release programs: the reality and the impacts.” Journal of the American Veterinary Medical Association. 2004. 225(9): p. 1369-1376.

8. Patronek, G.J., “Free-roaming and feral cats—their impact on wildlife and human beings.” Journal of the American Veterinary Medical Association. 1998. 212(2): p. 218–226.

Repeat After Me

Listening to NPR’s On the Media this weekend, I was struck by a story (first broadcast in 2006) about how certain “sticky” numbers—however dubious—find their way into the media landscape and beyond, as On the Media co-host Brooke Gladstone noted:

“Four years ago, we delved into the mysterious number, said to be 50,000, of child predators online at any given time. It was cited by the NBC Dateline program “To Catch a Predator” and also by then Attorney General Alberto Gonzales.

But spokespersons for the FBI, the National Center for Missing and Exploited Children, and the Crimes against Children Research Center said it was not based on any research they were aware of. The A.G.’s office at the time, well, they said it came from Dateline.”

Wall Street Journal columnist Carl Bialik, who spoke to Gladstone for the story, described the process whereby such slippery figures gain traction:

“An interesting phenomenon of these numbers is that they’ll often be cited to an agency or some government body, and then a study will pick it up, and then the press will repeat it from that study. And then once it appears in the press, public officials will repeat it again, and now it’s become an official number.”

All of which sounds very familiar—Bialik could easily be describing the “official numbers” put out by so many TNR opponents. Among those that have gained the most currency are the predation estimates from the Wisconsin Study, the American Bird Conservancy’s figure for the proportion of birds in the diets of free-roaming cats, and Dauphiné and Cooper’s estimate of free-roaming cats in the U.S.

The Wisconsin Study
Despite its having been discredited long ago (see, for example, “Addressing the Wisconsin Study”), the Wisconsin Study continues to be cited as if its estimate of 8–219 million birds killed by the state’s rural cats [1] was credible. As recently as last year, Longcore et al. cited the work in their essay “Critical Assessment of Claims Regarding Management of Feral Cats by Trap–Neuter–Return.” [2]

This, despite the fact that—15 years earlier—co-author Stanley Temple told the press:

“The media has had a field day with this since we started. Those figures were from our proposal. They aren’t actual data; that was just our projection to show how bad it might be.” [3]

It’s true: the media has had a field day. Among the major newspapers to cite the Wisconsin Study are the Wall Street Journal [4], the New York Times [5], and the Los Angeles Times [6]. However, as I’ve described previously, it’s been the wildlife conservationists and bird advocates who’ve really had a field day with the Wisconsin Study:

  • The American Bird Conservancy (ABC) refers to the study, in its brochure Domestic Cat Predation on Birds and Other Wildlife. And the ABC goes one step further, pointing out that Coleman and Temple’s estimate was for rural cats, and that “suburban and urban cats add to that toll.” [7]
  • A 2009 article in Audubon Magazine suggests “cats were annually knocking off somewhere in the neighborhood of 8 million birds just in rural Wisconsin.” [9] To the magazine’s credit, they used Coleman and Temple’s low estimate—but none of the numbers from the Wisconsin Study are scientifically sound.

Birds Represent 20–30% of the Diet of Free-roaming Cats
According to an ABC report (downloadable from their website), “extensive studies of the feeding habits of domestic, free-roaming cats… show that approximately… 20 to 30 percent [of their diet] are birds.”

This, apparently, is the same report that Ellen Perry Berkeley debunked in her book, TNR Past Present and Future: A history of the trap-neuter-return movement, noting that the ABC’s 20–30% figure was not based on “extensive studies” at all. [10] In fact, just three sources were used: the now-classic “English Village” study by Churcher and Lawton [11], the Wisconsin Study (described above), and Mike Fitzgerald’s contribution to “The Domestic Cat: The Biology of Its Behaviour.” [12]

This gets a little complicated, so bear with me.

When Churcher and Lawton reported, “overall, birds comprised 35% of the total catch,” [11] they were referring to prey tallies recorded by study participants—not to the overall diets of the cats involved. Figures obtained through similar methods for the Wisconsin Study were 20–23%, [1, 13, 14] which the authors suggest—citing Fitzgerald’s comprehensive review of predation and dietary studies—are in line with other work:

“Extensive studies of the feeding habits of free-ranging domestic cats over 50 years and four continents [12] indicate that small mammals make up approximately 70% of these cats’ prey while birds make up about 20%.” [14]

But they’re comparing apples and oranges. Both the English Village and Wisconsin Studies report the percentage of birds returned as a portion of the “total catch,” whereas Fitzgerald reports percentage by frequency (i.e., the occurrence of birds in the stomach contents or scats of free-roaming cats), a point apparently lost on Coleman and Craven. The 21% figure [12] they refer to, then, is simply not comparable to their own (or that of the English Village study, a fact Churcher and Lawton acknowledge in their paper). As Berkeley notes, “this would put birds, as a portion of the diet of cats, at roughly 7 to 10.5 percent—nowhere near the ‘20 to 30 percent’ figures unleashed on the unscientific public by ABC!”

To put all of this into more familiar terms, it’s a bit like saying that coffee makes up 20–30% of the American diet versus saying that 20–30% of Americans drink coffee each day.

Nevertheless, 13 years after the ABC first published its report, the myth persists. The report—including the mistaken dietary figures—is still available. And the National Audubon Society has helped perpetuate the error, noting in its Resolution Regarding Control and Management of Feral and Free-Ranging Domestic Cats:

“…it has been estimated that birds represent 20–30% of the prey of feral and free-ranging domestic cats.”

Estimates of Free-roaming Cats
In January, Steve Holmer, the ABC’s Senior Policy Advisor, told the Los Angeles Times, “The latest estimates are that there are about . . . 160 million feral cats [nationwide].” Sounds like an awful lot of cats—nearly one for every two humans in the country. So where does this figure come from?

The source is a paper by Nico Dauphiné and Robert Cooper (which can be downloaded via the ABC website), presented at the Fourth International Partners in Flight conference. In it, Dauphiné and Cooper use some remarkably creative accounting, beginning with an unsubstantiated estimate of unowned cats, to which they add an inflated number of owned cats that spend time outdoors. In the end, they conclude that there are “117–157 million free-ranging cats in the United States.” [15] (For a more thorough explanation, see my previous post on the subject.)

Estimating the number of free-roaming cats wasn’t even the point of their paper. As the title—“Impacts of Free-ranging Domestic Cats (Felis catus) On Birds In the United States: A Review of Recent Research with Conservation and Management Recommendations”—suggests, the primary purpose was to describe the cats’ impact on birds. The authors’ exaggerated figure was merely a convenient route to their estimate of birds killed annually by cats: “a minimum of one billion birds” [15] (which, it should be clear, has the potential to become a very sticky number).

Holmer goes a step further, using only the upper limit of the range published by Dauphiné and Cooper, and making the subtle—but important—shift from free-ranging to feral cats.

When I asked him about this, he explained that those figures were “based on an earlier version of Nico’s latest paper and are now being updated in our materials.” I don’t know that any such changes were made; and in any event, the bogus estimate has already been published in the L.A. Times—as if it were true.

*     *     *

TNR opponents will often point to the vast collection of research studies, government reports, news accounts, and the like, that support their assertions. Drill down a bit into that collection, though, and they all start to look alike: the same familiar sources, the same flawed studies—and the same bogus figures. These figures have become the kind of “official numbers” Bialik refers to: quantitative poseurs owing their popularity to tireless—and irresponsible—repetition more than anything else.

Literature Cited
1. Coleman, J.S. and Temple, S.A., On the Prowl, in Wisconsin Natural Resources. 1996, Wisconsin Department of Natural Resources: Madison, WI. p. 4–8.

2. Longcore, T., Rich, C., and Sullivan, L.M., “Critical Assessment of Claims Regarding Management of Feral Cats by Trap–Neuter–Return.” Conservation Biology. 2009. 23(4): p. 887–894.

3. Elliott, J., The Accused, in The Sonoma County Independent. 1994. p. 1, 10.

4. Sterba, J.P., Tooth and Claw: Kill Kitty?, in Wall Street Journal. 2002: New York. p. A.1

5. Barcott, B., Kill the Cat That Kills the Bird?, in New York Times. 2007: New York.–birds-t.html

6. Kennedy, J.M., Killer Among Us, in Los Angeles Times. 2003: Los Angeles.

7. ABC, Domestic Cat Predation on Birds and Other Wildlife. n.d., American Bird Conservancy: The Plains, VA.

8. FWS, Migratory Bird Mortality. 2002, U.S. Fish and Wildlife Service: Arlington, VA.

9. Williams, T., Felines Fatale, in Audubon Magazine. 2009, National Audubon Society: New York, NY.

10. Berkeley, E.P., TNR Past present and future: A history of the trap-neuter-return movement. 2004, Bethesda, MD: Alley Cat Allies.

11. Churcher, P.B. and Lawton, J.H., “Predation by domestic cats in an English village.” Journal of Zoology. 1987. 212(3): p. 439-455.

12. Fitzgerald, B.M., Diet of domestic cats and their impact on prey populations, in The Domestic cat: The biology of its behaviour, D.C. Turner and P.P.G. Bateson, Editors. 1988, Cambridge University Press: Cambridge; New York. p. 123–147.

13. Coleman, J.S. and Temple, S.A., Effects of Free-Ranging Cats on Wildlife: A Progress Report, in Fourth Eastern Wildlife Damaage Control Conference. 1989: University of Nebraska—Lincoln. p. 8–12.

14. Coleman, J.S., Temple, S.A., and Craven, S.R., Cats and Wildlife: A Conservation Dilemma. 1997, University of Wisconsin, Wildlife Extension.

15. Dauphiné, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2009. p. 205–219.

The Work Speaks—Part 6: Pain by Numbers

In April, Conservation Biology published a comment authored by Christopher A. Lepczyk, Nico Dauphiné, David M. Bird, Sheila Conant, Robert J. Cooper, David C. Duffy, Pamela Jo Hatley, Peter P. Marra, Elizabeth Stone, and Stanley A. Temple. In it, the authors “applaud the recent essay by Longcore et al. (2009) in raising the awareness about trap-neuter-return (TNR) to the conservation community,” [1] and puzzle at the lack of TNR opposition among the larger scientific community:

“…it may be that conservation biologists and wildlife ecologists believe the issue of feral cats has already been studied enough and that the work speaks for itself, suggesting that no further research is needed.”

In fact, “the work”—taken as a whole—is neither as rigorous nor as conclusive as Lepczyk et al. suggest. And far too much of it is plagued by exaggeration, misrepresentations, errors, and obvious bias. In Part 5 of this series, I critiqued Cole Hawkins’ 1998 PhD dissertation. Here, I’m going to untangle some of Lepczyk’s own PhD work: Landowners and cat predation across rural-to-urban landscapes, published in 2003.

The Study
In this study, surveys were distributed across three southeastern Michigan landscapes (rural, suburban, and urban) corresponding to established breeding bird survey (BBS) routes. [2] Among the survey questions:

“If you or members of your household own cats that are allowed access to the outside, approximately how many dead or injured birds a week do all the cats bring in during the spring and summer months (April through August) (0, 1, 2–3, 4–5, 6–7, 8–9, 10–15, 16–20, more than 20)?”

Based on 968 surveys returned from 1654 private landowners (a decent response rate of 58.5%), Lepczyk et al. conclude:

“Across the three landscapes there were ~800 to ~3100 cats, which kill between ~16,000 and ~47,000 birds during the breeding season, resulting in a minimum of ~1 bird killed/km/day.”

Increasing Uncertainty
How do Lepczyk and his collaborators arrive at these figures? It’s not entirely clear, actually. Despite numerous attempts, I’ve been unable to follow all of their calculations. However, using their data, I developed my own estimate: 1,119 outdoor cats, 511 of which were reported to be successful hunters.

Using this figure, I then summed across all three landscapes the birds killed or injured, plus those killed or injured by non-respondents’ hunting cats (based on the ratio of hunters to outdoor cats owned by respondents, or about 50%). The resulting estimate is 15,856 birds killed over the 22-week breeding season—close to the low estimate suggested by Lepczyk et al., but just a third of their maximum.

So, why the discrepancy?

One reason is that, at least for some of their estimates, Lepczyk et al. assumed that every landowner who didn’t respond to the survey owned outdoor cats. This, despite their survey results, which indicated that only about one-third of landowners fell into this category.

But the authors go further, generating predation estimates based on pure speculation, specifically that “non-respondents have 150% the number of outdoor cats as respondents.” [2] It should be noted that Lepczyk et al. also ran another scenario in which non-respondents had half the outdoor cats as did respondents—but, again, in both cases they assume that every non-respondent owned outdoor cats.

As a result of this approach, the authors end up in some strange territory: the estimated number of cats owned by non-respondents (based on the assumptions described above) far exceeds the number owned by respondents—by more than a two-to-one margin, in some cases. If the greatest impacts are going to be attributable to non-respondents, then what’s the point of doing the survey in the first place? There are accepted methods by which one can manage uncertainty—statistical analysis, confidence intervals, and the like. What Lepczyk et al. have done serves just one purpose: to inflate apparent predation rates.

Skewed Distributions
In addition to the flaws described above, there are some fundamental errors in the way the authors handle their data. Like so many others, Lepczyk et al. ignore the fact that their data is not normally distributed:

  1. Lepczyk et al. use the average number of birds killed/cat to calculate the total number of bids killed for each of the three landscapes. As I discussed previously), this is a highly positively skewed distribution—using a simple average, therefore, greatly overestimates the cats’ impact (by as much as a factor of two).
  2. A similar error is made when the authors use an average to describe the number of outdoor cats owned by each landowner. Again, because this is a skewed distribution, their use of a simple average exaggerates the extent of predation.
  3. The two inflated figures described in (1) and (2) are multiplied together, further inflating estimated predation rates.

Barratt has suggested that “median numbers of prey estimated or observed to be caught per year are approximately half the mean values, and are a better representation of the average predation by house cats based on these data.” [3] Accounting for the first point alone, then, my estimate is reduced to 8,000 birds killed over the 22-week breeding season.

Accounting for the second point is somewhat trickier. For one thing, we don’t know what constitutes an outdoor cat here—the survey simply asked respondents if they owned cats “that are allowed access to the outdoors.” [2] However, we do know the results of a 2003 survey, which indicated that nearly half of the cats with outdoor access were outside for two or fewer hours a day. And 29% were outdoors for less than an hour each day. [4] Although these figures almost certainly reflect owners in urban and suburban landscapes more than those in rural landscapes, it’s clear that a simple yes-or-no question on the subject is insufficient. Indeed, such a question will invariably overestimate the number of “outdoor cats”—which in turn overestimates predation rates.

This, coupled with the error inherent in using a simple average, pushes predation estimates lower. And the third point reduces those estimates further still. Taken together, these corrections could put my estimate closer to 4,000 birds. More important, the upper estimate proposed by Lepczyk et al.—47,000 birds—could easily be 10 times too high.

The Small Print
Despite their inflated figures, Lepczyk et al. suggest—rather absurdly, in light of the substantial flaws described above—that perhaps their estimates are actually too conservative:

“One caveat to our study is that landowners may have underestimated the number of cats they allow access to the outside. Such a result was found in a similar study of landowners in Wisconsin (Coleman and Temple, 1993).” [1] (Note: After reviewing “Rural Residents’ Free-Ranging Domestic Cats: A Survey,” [5] I’ve found no evidence of such a result.)

“… we found that a very common volunteered response among landowners that had no outdoor cats was that either their neighbors owned outdoor cats or that feral cats were present in the vicinity of their land… [suggesting] that at least some landowners under reported or chose not to report the number of outdoor cats they owned.”

But what about their reports of birds brought home killed or injured—how trustworthy were those? After all, the survey (mailed during the first week of October) asked respondents to recall the number of birds their cat(s) brought home April through August. Surely, there was a lot of guesswork involved. In fact, David Barratt found this kind of guesswork to overestimate predation rates. In a study published five years prior to “Landowners and Cat Predation,” Barratt concluded, “predicted rates of predation greater than about ten prey per year generally over-estimated predation observed.” [3]

The two studies cannot be compared directly for a number of reasons, but by way of comparison, the average predation rate used by Lepczyk et al. is approximately 31 birds/cat for the 22-week breeding season. Using Barratt’s work, in which the “heaviest” six continuous months correspond to about 58% of yearly prey totals, [6] I converted this to a yearly rate of 53 birds/cat/year. Barratt has shown that the actual predation rate, at this level, is less than half the rate predicted by cat owners. In other words, predictions of 50 birds/year generally correspond to catches closer to 25 birds/year.

While Lepczyk et al. emphasize the potential for under-estimating predation levels, they never consider the risk of over-estimating these levels—or their most obvious potential source of error: landowners’ recollections of birds killed. The authors question respondents’ reports of outdoor cats, but accept without question their reports of birds injured or killed over the previous six-month period. And, as Barratt indicated, such reports can be inflated by a factor of two or more!

Something else I find troubling comes, of all places, from the Acknowledgements section. Among those thanked “for helpful and constructive reviews” are American Bird Conservancy (ABC) president George Fenwick and Linda Winter, director of ABC’s Cats Indoors! campaign. It’s not clear how Fenwick and Winter contributed to the final paper, but their involvement on any level raises questions about possible bias. Certainly, Winter has credibility issues when it comes to “research” about the impact of free-roaming cats on birds, as I’ve already described (see also pp. 18–24 of TNR Past present and future: A history of the trap-neuter-return movement [7]).

*     *     *

The same year Lepczyk’s paper was published, the American Veterinary Medicine Association held an Animal Welfare Forum “devoted to the management of abandoned and feral cats.” [8] In attendance were more than 200 veterinarians, animal control officials, wildlife conservationists, and animal advocates—each with a different perspective on feral cats in general and TNR in particular.

In welcoming this diverse group, then-President-Elect Bonnie Beaver recognized the range of contentious issues before them:

“Feral cats evoke hot debates about ecological issues, individual cat welfare, human responsibilities, intercat disease transmission, humaneness, zoonosis control, and management and dissolution of unowned cats.” [8]

Amidst the “hot debate,” though, Beaver was optimistic:

“We will not always agree, but we will come away with increased knowledge and a renewed commitment to work for the welfare of all the animals with which we share the earth” [8]

While I tend to share Beaver’s optimism, I think the debate is hurt—if not derailed entirely—by the publication of research aimed not at increasing our collective knowledge, but rather at supporting a particular position. Like Cole Hawkins’ dissertation, “Landowners and Cat Predation” is, at best, an interesting pilot study for subsequent work. And yet, it’s widely—and uncritically—cited in the feral cat/TNR literature. Longcore et al., for example, refer to it as “evidence [indicating] that cats can play an important role in fluctuations of bird populations,” [9] despite the fact that Lepczyk et al. don’t actually address the issue of bird populations at all. More recently, Dauphiné and Cooper use the inflated predation rate suggested by Lepczyk et al. (along with rates proposed by other researchers) to arrive at their “billion birds” figure. [10]

The method employed in “Landowners and Cat Predation”—asking owners of cats to recall the number and species of birds over the previous six-month period—invites overestimation from the very outset. Lepczyk et al. then inflate these numbers through both careless (e.g., using averages to describe skewed data) and deliberate (e.g., assuming all non-respondents owned cats—perhaps 50% more than respondents did) means. Rather than getting us any closer to the truth about cat predation, this study only obscured it further.

Worse, it’s been packaged and sold—and subsequently “bought”—as rigorous science, thereby giving it an undeserved legitimacy. Such efforts are impediments to knowledge and understanding—and therefore, to progress.

1. Lepczyk, C.A., et al., “What Conservation Biologists Can Do to Counter Trap-Neuter-Return: Response to Longcore et al.” Conservation Biology. 2010. 24(2): p. 627-629.

2. Lepczyk, C.A., Mertig, A.G., and Liu, J., “Landowners and cat predation across rural-to-urban landscapes.” Biological Conservation. 2003. 115(2): p. 191-201.

3. Barratt, D.G., “Predation by house cats, Felis catus (L.), in Canberra, Australia. II. Factors affecting the amount of prey caught and estimates of the impact on wildlife.” Wildlife Research. 1998. 25(5): p. 475–487.

4. Clancy, E.A., Moore, A.S., and Bertone, E.R., “Evaluation of cat and owner characteristics and their relationships to outdoor access of owned cats.” Journal of the American Veterinary Medical Association. 2003. 222(11): p. 1541-1545.

5. Coleman, J.S. and Temple, S.A., “Rural Residents’ Free-Ranging Domestic Cats: A Survey.” Wildlife Society Bulletin. 1993. 21(4): p. 381–390.

6. Barratt, D.G., “Predation by House Cats, Felis catus (L.), in Canberra, Australia. I. Prey Composition and Preference.” Wildlife Research. 1997. 24(3): p. 263–277.

7. Berkeley, E.P., TNR Past present and future: A history of the trap-neuter-return movement. 2004, Bethesda, MD: Alley Cat Allies.

8. Kuehn, B.M. and Kahler, S.C. The Cat Debate. JAVMA Online 2004 November 27, 2009 [accessed 2009 December 24].

9. Longcore, T., Rich, C., and Sullivan, L.M., “Critical Assessment of Claims Regarding Management of Feral Cats by Trap–Neuter–Return.” Conservation Biology. 2009. 23(4): p. 887–894.

10. Dauphiné, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2010. p. 205–219.

A Critical Assessment of “Critical Assessment”—Part 1

The first in a series of posts that breaks down my critique of the essay “Critical Assessment of Claims Regarding Management of Feral Cats by Trap-Neuter-Return” (Conservation Biology, Volume 23, No. 4, 887–894) by Travis Longcore, Catherine Rich, and Lauren M. Sullivan.

How many birds are killed by cats? It’s a fair question. And if Longcore et al. are to be believed, we actually have a pretty good handle on this issue:

Feral and free-roaming cats are efficient predators, and their abundance results in substantial annual mortality of wildlife. Churcher and Lawton (1987) concluded that cats were responsible for 30% of the mortality of House Sparrows (Passer domesticus) in an English village. May (1988) extrapolated their results to an estimated 100 million birds and small mammals killed per year in England. Although this extrapolation is often criticized for the limited geographic scope and number of cats studied, Woods et al. (2003) confirmed and refined this result with a larger sample size and geographic area that included England, Scotland, and Wales. From a survey of cat owners that documented prey returned by 696 cats, Woods et al. (2003) estimated that the 9 million cats in Britain kill at least 52–63 million mammals, 25–29 million birds, and 4–6 million reptiles each summer. In North America Coleman and Temple (1996) developed estimates of cat densities in Wisconsin and associated mortality of 8–217 million birds per year.

The relationship between cat predation and bird populations is highly complex, and our understanding quite limited—something Longcore et al. only hint at. It doesn’t help matters that results of small, isolated studies are often extrapolated from rural to urban environments, from one region to another, and so forth. In 1995, Churcher himself cautioned against making such leaps: “I’d be very wary about extrapolating our results even for the rest of Britain, let alone America,” he told Catnip, a newsletter published by the Cummings School of Veterinary Medicine at Tufts University.

Actually, Churcher went much further: “I don’t really go along with the idea of cats being a threat to wildlife. If the cats weren’t there, something else would be killing the sparrows or otherwise preventing them from breeding.” [1] Although Longcore et al. seem eager to cite Churcher and Lawton’s now-classic work as “evidence” of the damage cats can do, they make no mention of Churcher’s later comments (just one of many examples of their tendency to “cherry pick” from the literature only the bits and pieces that fit neatly into their argument).

But back to the number of birds killed by cats. Many of the studies on the subject—including those cited by Longcore et al.—are quite flawed. Among the numerous issues that call into question their estimates are assumptions regarding the number of cats that actually hunt, the number of cats allowed outdoors, the number of cats that live in a particular area, and so forth. And then, of course, there are the risks inherent in estimating population numbers and characteristics based on a small sample size.

(In fact, Woods et al. go to some lengths to emphasize the limitations of their study, conceding, for example, that they “may have focused on predatory cats.” [2] This is just one of many reasons the authors cite for requesting that their work be treated “with requisite caution”—a request apparently ignored by Longcore et al.)

By referring uncritically to such studies, Longcore et al. give far greater importance to this work than is warranted. Repeating—and therefore reinforcing—figures known to be erroneous and/or misleading is simply irresponsible.

The fact that the “English village” study and “Wisconsin Study” have been so thoroughly discredited (see, for example, the comments of Nathan Winograd, director of the No Kill Advocacy Center, and a report by Laurie D. Goldstein, Christine L. O’Keefe, and Heidi L. Bickel) raises some unsettling questions about their inclusion in a paper billed as a “critical assessment.” For example: Are the authors interested enough in rigorous scientific inquiry to look beyond “the usual suspects” in their assessment of the key issues?

One might also wonder: Given the important literature that Longcore et al. choose to overlook, ignore, or dismiss (to be addressed in detail in future posts), what is their motivation for writing the essay in the first place? Actually, this question was answered in January, two months after the paper’s publication, when L.A. Superior Court Judge Thomas McKnew decided in favor of an injunction against publicly supported TNR in Los Angeles (LASC BS115483). The Urban Wildlands Group (for which Longcore serves as Science Director, and Rich as Executive Officer) was the lead petitioner in the case.

If “Critical Assessment” is any indication, the case had much more to do with politics, PR, and marketing than with science.

1. n.a. (1995). What the Cat Dragged In. Catnip, 4–6.

2. Woods, M., Mcdonald, R. A., & Harris, S. (2003). Predation of wildlife by domestic cats Felis catus in Great Britain. Mammal Review, 33(2), 174-188.

Works cited in “Critical Assessment” excerpt:

• Churcher, P. B., & Lawton, J. H. (1987). Predation by domestic cats in an English village. Journal of Zoology, 212(3), 439-455.
• Coleman, J. S., & Temple, S. A. (1996). On the Prowl. Wisconsin Natural Resources, 20, 4–8.
• May, R. M. (1988). Control of feline delinquency. Nature, 332, 392-393.