Collisions, Predation, and Bird Populations

Masts of the Rugby Radio Station transmitter, Warwickshire, England. Courtesy of Wikimedia Commons and Sreejithk2000.

Recent research suggests that collisions with buildings and communication towers have no significant effect on bird populations. These findings raise additional questions about the often-implied connection between predation by free-roaming cats and declining bird numbers.


According to the American Bird Conservancy, 300 million to 1 billion birds are killed each year in “collisions with glass on buildings, from skyscrapers to homes.” As many as 50 million more are killed annually by communication towers.

Yet, according to a study published last September in the open-access, online publication PLoS ONE, “this conspicuous source of mortality has had no discernible effect on long-term population dynamics among North American landbirds.” [1]

“At worst,” suggest authors Todd Arnold and Robert Zink, conservation biologists from the University of Minnesota, “collision mortality could be described as an added burden for populations already in decline for other reasons.” [1]

Which would seem to be, if not good news for the folks at ABC, then at least news. (Even solutions “that can greatly reduce avian collision mortality at manmade structures,” warn the researchers, “will not halt population declines among North American migratory birds.” [1])

So, why is there no mention of this study—published nearly six months ago—on the ABC website?

I suspect it will never appear there—or in any ABC publication. And they’re certainly not going to mention it to the media—too many awkward questions about contradictory assertions, resource allocation, and the like. After all, this is an organization that prides itself on using “the best available science” to shape policy.

(To be clear: Arnold and Zink are not opposed to “the deployment of simple design solutions that can greatly reduce avian collision mortality at manmade structures,” [1] despite the rather dire results of their analysis.)

The Study
To better understand potential population-level impacts, Arnold and Zink compared “long-term records of avian mortality from communication towers and urban buildings… with population estimates and trend data from the North American Breeding Bird Survey.” [1] The relative vulnerability of various species (188 in the case of communication towers, 147 for buildings) was quantified by comparing the proportion of birds killed in collisions with towers and/or buildings with their proportion in the overall bird population.

Species with very high collision mortalities relative to their abundance were dubbed “super colliders,” while species with very low instances of collisions relative to their numbers were dubbed “super avoiders.”

The spread between the two extremes is astonishing. Bay-breasted warblers, for example, were found to be 236 times more likely to collide with towers than would be predicted by chance alone (but are nevertheless considered a species of Least Concern). Horned larks, on the other hand, are 688 times more likely to avoid the same towers.

Fascinating work! What caught my eye, though, was the authors’ suggestion that their analysis technique would be appropriate for assessing “many poorly quantified conservation threats [including] house cat predation.” [1]

Future (Hypothetical) Study
Curious, I contacted Arnold, asking him how one would go about conducting such a study. Surely, obtaining an accurate count of mortalities due to predation is far more complicated than tallying mortalities due to man-made structures (itself, no trivial undertaking).

In fact, the greatest challenge, suggests Arnold, is not the data collection or subsequent analysis.

“In order to do the scientific study that you asked about, it’s necessary to approach it objectively, and I’d worry that anybody tackling this issue would be in one camp or the other, and the study really demands an impartial referee. A possibly better alternative would be to get members of both sides to agree in a mediated discussion what would constitute a valid study of the issue, and how such a study would be designed, implemented, and interpreted.”

Fair enough. Still, though: if implementation and interpretation pose particular challenges, the design of the study is actually fairly straightforward. “To apply the approach that we used for tower and building collisions,” Arnold says, “you would need to assemble a large data set on what species of birds are killed by cats.”

“It would probably take a large network of citizen scientists to accumulate a database on species composition of cat-killed wildlife; they would need to be people who had frequent and regular access to one or more cats—so, cat owners, cat monitors, and cat stewards who would agree to participate on a long-term basis. It would be important that sampling wasn’t driven by spectacular events (e.g., a cat owner ignores several non-descript House Sparrows that their cat brings home, and only submits information when a colorful Northern Cardinal gets killed). Conversely, you’d need to worry about people who might report only the boring and common things and fail to report when a rare or well-loved bird is killed because they are ashamed or fear backlash from the bird-loving public.”

Proper identification of each species would, of course, be critical. This, says Arnold, could be done using digital photos or by collecting remains (a method often employed in predation studies [2] and [3] and [4]).

“The study would have to continue until several thousand birds had been identified to species (Bob Zink and I worked with data sets that were a minimum of about 5,000 dead birds). From the mortality records, one would first identify the species that were most vulnerable to cats by comparing their proportion in the cat-kill data to their expected proportion based on population estimates. So, say for example, that juncos and American robins were 5.2 and 3.2 percent of the mortality records, but only 1.3 and 1.6 percent of the total bird population, then they’d be 4 and 2 times more vulnerable to cats than expected by chance. Other species would be less vulnerable than expected by chance. This part of the study would identify which species of birds were most vulnerable to predation by cats, and a priori I’d expect to see that ground-feeding birds like juncos and robins were more vulnerable, as well as urban- and suburban-adapted birds like robins, starlings, chickadees, etc.”

As Arnold and Zink point out in their paper, “total body counts reveal little about relative mortality risk for each species”—a fact often overlooked or ignored by those trying to link predation by cats to declining bird populations. And so, “the final—but critical—step” in our hypothetical study, says Arnold, “is to ask: Does this mortality factor matter do bird populations?

“It obviously matters to the individuals that were killed, but given that 40–50 percent of the fall bird population is probably not going to be alive one year later, the focus here has to be on long-term population dynamics. And so, the final step would involve correlating the measure of vulnerability to cat predation from the first step with long-term population trends for these same species. If one finds that cat predation rates are not correlated with bird population trends, then it’s time to stop vilifying cats for bird declines (with the important caveat that it might still be important for one or two endangered/threatened species). If one finds that cat predation rates are negatively correlated with bird population declines, then it suggests that cats might be an important limiting factor of birds populations (with the important caveat that it might be due to some other unmeasured factor that is also correlated with cat predation).”

What We Already Know
Unfortunately, I’m in no position to undertake the study Arnold describes. And, in any case, am (unapologetically) in “one camp or the other.” (That said, I’d jump at the chance to be part of the aforementioned “mediated discussion.”)

On the other hand, there’s already plenty of research suggesting that predation does not necessarily result in population-level impacts. In The Domestic Cat: The Biology of Its Behaviour, for example, Mike Fitzgerald and Dennis Turner thoroughly reviewed 61 predation studies, concluding rather unambiguously: “We consider that we do not have enough information yet to attempt to estimate on average how many birds a cat kills each year. And there are few, if any studies apart from island ones that actually demonstrate that cats have reduced bird populations.” [5]

Also: it’s well-known that predators—cats included—tend to prey on the young, the old, the weak and unhealthy. Indeed, at least two research studies have investigated this phenomenon in great detail. In one, researchers comparing the fat reserves of birds killed by cats to those of birds killed through non-predatory events (e.g., collisions with windows or cars) found that “mean fat scores evident in the cat-killed birds… were sufficiently low that these individuals were likely to have had poor long-term survival prospects.” [6]

In another study, researchers found that songbirds killed by cats tend to have smaller spleens than those killed through non-predatory events, leading them to conclude that “avian prey often have a poor health status.” [7]

As the UK’s Royal Society for the Protection of Birds notes: “It is likely that most of the birds killed by cats would have died anyway from other causes before the next breeding season, so cats are unlikely to have a major impact on populations.” [8]

(Frank Gill makes this very point in the third edition of Ornithology: “With some conspicuous exceptions… predators don’t limit or regulate the bird populations on which they prey. Instead, they take weak, sick, and young birds, many of which are part of the surplus that exceeds locally limiting food supplies.” [9] When it comes to cats, however, Gill considers “managed feral cat colonies [to be] potentially a serious threat to local bird populations.”)

•     •     •

Granted, the studies referenced above are no substitute for the one Arnold describes. And I don’t expect ABC to “stop vilifying cats for declining bird populations” anytime soon.

Nevertheless, Arnold and Zink’s findings ought to make it more difficult for ABC (or any other organization blaming cats for declining bird populations) to continue using cats as scapegoats. After all, even using the figures cited by ABC, it seems quite likely that collisions with buildings and communication towers are responsible for more bird deaths than are cats.* And the man-made structures are taking out healthy individuals.

Of course, as Arnold notes in his e-mail, bird species vulnerable to man-made structures may not be vulnerable to predation by cats, and those vulnerable to predation by cats may not be vulnerable to collisions. Still, taken together, all of this research begs the question: If building- and tower-collisions aren’t having population-level impacts, how likely is it that free-roaming cats are?

Which is exactly what I asked Darin Schroeder, ABC’s Vice President of Conservation Advocacy, and Steve Holmer, their Director of the Bird Conservation Alliance. That was three weeks ago.

*According to The American Bird Conservancy’s Guide to Bird Conservation, “532 million birds [are] killed annually by outdoor cats.” [10] Though far less than the “one billion birds” sometimes cited by TNR opponents, [11] ABC’s “estimate” is based on some dubious assumptions.

Thanks to my friends at Alley Cat Allies for bringing Arnold and Zink’s paper to my attention.

Literature Cited
1. Arnold, T.W. and Zink, R.M., “Collision Mortality Has No Discernible Effect on Population Trends of North American Birds.” PLoS ONE. 2011. 6(9): p. e24708. http://dx.doi.org/10.1371%2Fjournal.pone.0024708

2. Churcher, P.B. and Lawton, J.H., “Predation by domestic cats in an English village.” Journal of Zoology. 1987. 212(3): p. 439-455. http://dx.doi.org/10.1111/j.1469-7998.1987.tb02915.x

3. Woods, M., McDonald, R.A., and Harris, S., “Predation of wildlife by domestic cats Felis catus in Great Britain.” Mammal Review. 2003. 33(2): p. 174-188. http://www.mammal.org.uk/index.php?option=com_content&view=article&id=256:domestic-cat-predation-on-wildlife&catid=51:survey-reports&Itemid=289

4. Barratt, D.G., “Predation by House Cats, Felis catus (L.), in Canberra, Australia. I. Prey Composition and Preference.” Wildlife Research. 1997. 24(3): p. 263–277.

5. Fitzgerald, B.M. and Turner, D.C., Hunting Behaviour of domestic cats and their impact on prey populations, in The Domestic Cat: The biology of its behaviour, D.C. Turner and P.P.G. Bateson, Editors. 2000, Cambridge University Press: Cambridge, U.K.; New York. p. 151–175.

6. Baker, P.J., et al., “Cats about town: Is predation by free-ranging pet cats Felis catus likely to affect urban bird populations? Ibis. 2008. 150: p. 86–99. http://www.ingentaconnect.com/content/bsc/ibi/2008/00000150/A00101s1/art00008

7. Møller, A.P. and Erritzøe, J., “Predation against birds with low immunocompetence.” Oecologia. 2000. 122(4): p. 500–504. http://www.springerlink.com/content/ghnny9mcv016ljd8/

8.  n.a. (2011) Are cats causing bird declines? http://www.rspb.org.uk/advice/gardening/unwantedvisitors/cats/birddeclines.aspx Accessed October 26, 2011.

9. Gill, F.B., Ornithology. 3rd ed. 2007, New York: W.H. Freeman. xxvi, 758 p.

10. Lebbin, D.J., Parr, M.J., and Fenwick, G.H., The American Bird Conservancy Guide to Bird Conservation. 2010, London: University of Chicago Press.

11. Dauphine, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2009. p. 205–219. http://www.pwrc.usgs.gov/pif/pubs/McAllenProc/articles/PIF09_Anthropogenic%20Impacts/Dauphine_1_PIF09.pdf

On Invasion and Persuasion

Smithsonian magazine is, according to its website, “created for modern, well-rounded individuals with diverse interests” and “chronicles the arts, history, sciences and popular culture of the times.” Jess Righthand’s recent article, “The World’s Worst Invasive Mammals,” seems—despite its inclusion in the online edition’s “Science & Nature” section—better suited for the pop culture category.

Indeed, the story has more to do with sensationalism than science.

Feral Cat Population
Righthand’s claim that “there are an estimated 60 million feral cats in the United States alone” is conservative compared to some other estimates. David Jessup, for example, suggested in 2004 that there were 60–100 million [1], while, more recently, The American Bird Conservancy Guide to Bird Conservation puts the figure at 60–120 million [2] (neither cites a source).

Still, Merritt Clifton of Animal People, an independent newspaper dedicated to animal protection issues, makes a compelling argument that the population of feral cats in the U.S. is much smaller than is often reported, and may very well be on the decline. [3]

Clifton’s estimates are derived not from surveys of homeowners feeding stray and feral cats, but from “information about the typical numbers of cats found in common habitat types, gleaned from a national survey of cat rescuers… cross-compared with animal shelter intake data.” [4] In 2003, Clifton suggested that “the winter feral cat population may now be as low as 13 million and the summer peak is probably no more than 24 million.” [4]

Predation on Birds
Righthand puts the figure for annual bird deaths attributed to feral cats at “around 480 million.” Nowhere near the “one billion birds” proposed by Nico Dauphine and Robert Cooper, [5] of course, but more than enough to get the attention of Smithsonian readers.

But, as I’ve pointed out repeatedly, even high rates of predation do not equate to population declines (though, clearly, it’s easy to suggest as much). Many researchers have disputed the kind of broad, overreaching claims to which Righthand alludes. Biologist C.J. Mead, for example, reviewing the deaths of “ringed” (banded) birds reported by the British public, suggests that cats may be responsible for 6.2–31.3 percent of bird deaths. “Overall,” writes Mead, “it is clear that cat predation is a significant cause of death for most of the species examined.” Nevertheless, Mead concludes:

“there is no clear evidence of cats threatening to harm the overall population level of any particular species… Indeed, cats have been kept as pets for many years and hundreds of generations of birds breeding in suburban and rural areas have had to contend with their predatory intentions.” [6]

Mike Fitzgerald and Dennis Turner come to essentially the same conclusion: “We consider that we do not have enough information yet to attempt to estimate on average how many birds a cat kills each year. And there are few, if any studies apart from island ones that actually demonstrate that cats have reduced bird populations.” [7]

Then, too, there’s the critical distinction between compensatory and additive predation—again, a point I’ve made numerous times. Two very interesting studies have generated compelling evidence that birds killed by cats are, on average, significantly less healthy than those killed through non-predatory events (e.g., collisions with buildings). [8, 9] In other words, these birds probably weren’t going to live long enough to contribute to the overall population numbers; predation was compensatory rather than additive.

Public Health Threats
“When house cats are allowed free range outdoors by their owners,” argues Righthand, “or simply don’t have owners, they not only wreak havoc as opportunistic hunters, they can also spread disease. In addition to carrying rabies, 62 to 82 percent of cats in a recent study tested positive for toxoplasmosis.” Here, Righthand seems to be cribbing off of Hildreth, Vantassel, and Hygnstrom, of “Feral Cats and Their Management” fame—hardly a reputable source.

Rabies
Regarding rabies—a topic I’ll save for future posts—I think it’s important to put this into perspective. I happen to have data from Florida handy, and according to that state’s Department of Health, approximately 22,000 Florida residents have died of the flu or pneumonia since 2006 (actually, that figure accounts for only 24 of Florida’s 67 counties, so the total is surely much higher).

By way of comparison: from 2005 through mid-May of this year, there were 11 reported cases of rabies in humans across the entire country (though, I believe there were a handful of reported cases this summer as well).

In terms of public health, then, I think we’re all better off focusing on frequent hand washing, sneezing into our sleeves, and the like—as opposed to, say, exterminating this country’s most popular companion animal by the millions.

Toxoplasma gondii (I)
While it’s true that cats are the definitive host of Toxoplasma gondii, it’s important to note that “wild game can be a source of T. gondii infection in humans, cats, and other carnivores. Serologic data show that a significant number of feral pigs, bears, and cervids are exposed to T. gondii. [10]

“Humans,” write Elmore et al., “usually become infected through ingestion of oocyst-contaminated soil and water, tissue cysts in undercooked meat, or congenitally. Because of their fastidious nature, the passing of non-infective oocysts, and the short duration of oocyst shedding, direct contact with cats is not thought to be a primary risk for human infection.” [11]

But to Righthand’s point: the rate of cats testing positive—or seroprevalence—is, in any event, not a useful measure of their ability to infect other animals or people.

According to Dubey and Jones, “most cats seroconvert after they have shed oocysts. Thus, it is a reasonable assumption that most seropositive cats have already shed oocysts.” [12] “Testing positive,” in this case, is nothing more than the detection of antibodies resulting from seroconversion (the same process, by the way, that takes place in humans after receiving a flu shot).

So, what exactly is Righthand’s point? Did she simply not do her homework here, or is the idea to portray these cats as a threat far, far beyond what the scientific evidence supports? Both, I suspect.

Toxoplasma gondii (II)
T. gondii
, Righthand continues, “has been shown to cause neurological damage to sea otters and other marine mammals that are exposed when heavy rainfall washes infected cat feces into the water.” Again, this is terrain I’ve covered previously. (Righthand, it seems, could do herself—and Smithsonian readers—a favor by subscribing to Vox Felina!)

Yes, T. gondii has been linked to the illness and death of marine life, primarily sea otters [13], prompting investigation into the possible role of free-roaming (both owned and feral) cats. [14, 15] It’s generally thought that oocysts (the mature, infective form of the parasite) are transferred from soil contaminated with infected feces to coastal waterways by way of freshwater run-off. [15]

However, one study found that 36 of 50 sea otters from coastal California were infected with the Type X strain of T. gondii [16], a type linked to wild felids (mountain lions and a bobcat, in this case), but not to domestic cats. [15] A recently published study from Germany seems to corroborate these findings. Herrmann et al. analyzed 18,259 fecal samples (all from pet cats) for T. gondii and found no Type X strain. (It’s interesting to note, too, that only 0.25% of the samples tested positive for T. gondii). [17]

Once again, we’re back to the question: What is Righthand trying to accomplish here?

Population Impacts
“Cats have,” writes Righthand, “also hurt populations of birds, reptiles and other creatures. The black stilt of New Zealand (a seabird), the Okinawa woodpecker and the Cayman Island ground iguana are just a few of the dozens of endangered species at risk due to the proliferation of feral cats.”

At the risk of pointing out the obvious, endangered species are—by definition—at risk due to the proliferation of all sorts of threats. That’s how they became endangered in the first place. To suggest, as Righthand does, that cats are the sole threat these animals face is both misleading and irresponsible.

Righthand (taking a cue, perhaps, from the authors of The ABC Guide?) also makes the common mistake of using island impacts (which are, themselves, more complex than often acknowledged) to imply impacts elsewhere (better yet: everywhere). Readers, it seems, are on their own in terms of doing any research on the topic.

Mission Failure
How much of the blame we can put on Righthand, I don’t know. According to Smithsonian’s website, she’s an intern with the magazine. Had the editors wanted a more thoroughly researched article, they could have demanded one. (This, some readers will recall, is not the first time I’ve been disappointed with the Smithsonian’s lack of rigor.)

According to its website, the mission of the Smithsonian is straightforward but ambitious: “the increase and diffusion of knowledge.” Righthand’s article—misleading at best—falls well short. It seems she’s still struggling with how to best express the organization’s proclaimed values—in this case, going overboard on the creativity at the expense of excellence and integrity.

Literature Cited
1. Jessup, D.A., “The welfare of feral cats and wildlife.” Journal of the American Veterinary Medical Association. 2004. 225(9): p. 1377-1383. http://avmajournals.avma.org/doi/abs/10.2460/javma.2004.225.1377

2. Lebbin, D.J., Parr, M.J., and Fenwick, G.H., The American Bird Conservancy Guide to Bird Conservation. 2010, London: University of Chicago Press.

3. Clifton, M. (2003) Roadkills of cats fall 90% in 10 years—are feral cats on their way out? http://www.animalpeoplenews.org/03/11/roadkills1103.html Accessed May 23, 2010.

4. Clifton, M. Where cats belong—and where they don’t. Animal People 2003 [cited 2009 December 24].  http://www.animalpeoplenews.org/03/6/wherecatsBelong6.03.html.

5. Dauphiné, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2009. p. 205–219. www.pwrc.usgs.gov/pif/pubs/McAllenProc/articles/PIF09_Anthropogenic%20Impacts/Dauphine_1_PIF09.pdf

6. Mead, C.J., “Ringed birds killed by cats.” Mammal Review. 1982. 12(4): p. 183-186. http://dx.doi.org/10.1111/j.1365-2907.1982.tb00014.x

7. Fitzgerald, B.M. and Turner, D.C., Hunting Behaviour of domestic cats and their impact on prey populations, in The Domestic Cat: The biology of its behaviour, D.C. Turner and P.P.G. Bateson, Editors. 2000, Cambridge University Press: Cambridge, U.K.; New York. p. 151–175.

8. Baker, P.J., et al., “Cats about town: is predation by free-ranging pet cats Felis catus likely to affect urban bird populations? Ibis. 2008. 150: p. 86-99. http://dx.doi.org/10.1111/j.1474-919X.2008.00836.x

9. Møller, A.P. and Erritzøe, J., “Predation against birds with low immunocompetence.” Oecologia. 2000. 122(4): p. 500-504. http://www.springerlink.com/content/ghnny9mcv016ljd8/

10. Hill, D.E., Chirukandoth, S., and Dubey, J.P., “Biology and epidemiology of Toxoplasma gondii in man and animals.” Animal Health Research Reviews. 2005. 6(01): p. 41-61. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=775956&fulltextType=RA&fileId=S1466252305000034

11. Elmore, S.A., et al., “Toxoplasma gondii: epidemiology, feline clinical aspects, and prevention.” Trends in Parasitology. 26(4): p. 190-196. http://www.sciencedirect.com/science/article/B6W7G-4YHFWNM-1/2/2a468a936eb06649fde0463deae4e92f

12. Dubey, J.P. and Jones, J.L., “Toxoplasma gondii infection in humans and animals in the United States.” International Journal for Parasitology. 2008. 38(11): p. 1257-1278. http://www.sciencedirect.com/science/article/B6T7F-4S85DPK-1/2/2a1f9e590e7c7ec35d1072e06b2fa99d

13. Jones, J.L. and Dubey, J.P., “Waterborne toxoplasmosis – Recent developments.” Experimental Parasitology. 124(1): p. 10-25. http://www.sciencedirect.com/science/article/B6WFH-4VXB8YT-2/2/8f9562f64497fe1a30513ba3f000c8dc

14. Dabritz, H.A., et al., “Outdoor fecal deposition by free-roaming cats and attitudes of cat owners and nonowners toward stray pets, wildlife, and water pollution.” Journal of the American Veterinary Medical Association. 2006. 229(1): p. 74-81. http://avmajournals.avma.org/doi/abs/10.2460/javma.229.1.74

15. Miller, M.A., et al., “Type X Toxoplasma gondii in a wild mussel and terrestrial carnivores from coastal California: New linkages between terrestrial mammals, runoff and toxoplasmosis of sea otters.” International Journal for Parasitology. 2008. 38(11): p. 1319-1328. http://www.sciencedirect.com/science/article/B6T7F-4RXJYTT-2/2/32d387fa3048882d7bd91083e7566117

16. Conrad, P.A., et al., “Transmission of Toxoplasma: Clues from the study of sea otters as sentinels of Toxoplasma gondii flow into the marine environment.” International Journal for Parasitology. 2005. 35(11-12): p. 1155-1168. http://www.sciencedirect.com/science/article/B6T7F-4GWC8KV-2/2/2845abdbb0fd82c37b952f18ce9d0a5f

17. Herrmann, D.C., et al., “Atypical Toxoplasma gondii genotypes identified in oocysts shed by cats in Germany.” International Journal for Parasitology. 2010. 40(3): p. 285–292. http://www.sciencedirect.com/science/article/B6T7F-4X1J771-2/2/dc32f5bba34a6cce28041d144acf1e7c

The Work Speaks—Part 3: Predatory Blending?

In April, Conservation Biology published a comment authored by Christopher A. Lepczyk, Nico Dauphiné, David M. Bird, Sheila Conant, Robert J. Cooper, David C. Duffy, Pamela Jo Hatley, Peter P. Marra, Elizabeth Stone, and Stanley A. Temple. In it, the authors “applaud the recent essay by Longcore et al. (2009) in raising the awareness about trap-neuter-return (TNR) to the conservation community,” [1] and puzzle at the lack of TNR opposition among the larger scientific community:

“…it may be that conservation biologists and wildlife ecologists believe the issue of feral cats has already been studied enough and that the work speaks for itself, suggesting that no further research is needed.”

In fact, “the work”—taken as a whole—is neither as rigorous nor as conclusive as Lepczyk et al. suggest. And far too much of it is plagued by exaggeration, misrepresentations, errors, and obvious bias. In a previous post, I presented examples of researchers drawing big conclusions from small sample sizes. Here, I’ll discuss the important distinction between compensatory and additive predation—a point too often left out of the feral cat/TNR discussion.

Sins of Omission
Focusing on the number of prey injured or killed by cats, without also recognizing that there are different types of predation, implies that each and every bird, mammal, reptile, etc. is destined to be part of its species’ breeding population. Of course, that’s not at all how things work out in the natural world—with or without predation by cats.

And yet, numerous studies [2-10], reviews [11], and other published papers [12-14] fail to acknowledge the critical difference between compensatory predation (in which prey would have died even in the absence of a particular predator, due to illness, starvation, other predators, etc.) and additive predation (in which healthy prey are killed). It’s the difference between, as Beckerman et al. put it, the “doomed surplus hypothesis” and the “hapless survivor hypothesis.” [15]

This is a critical point when it comes to connecting predation rates (from cats or any other predator) to population impacts. The more additive the predation, the greater the potential impact on population numbers. Purely compensatory predation, on the other hand, is less likely to affect overall populations. Of course, the connection is seldom so simple and direct, and a number of factors (e.g., habitat area and type, base population numbers, etc.) influence the ultimate outcome—making it quite difficult to tease out specific causal relationships. Nevertheless, if we want to better understand the impact of free-roaming cats on wildlife, we cannot ignore the distinction between—and inherent implications of—these two types of predation.

Honorable Mentions
Although Churcher and Lawton failed to mention the distinction between compensatory and additive predation in their now-classic “English village” study [4], Churcher later suggested that their findings were largely in the compensatory category: “If the cats weren’t there, something else would be killing the sparrows or otherwise preventing them from breeding.” [16]

Woods et al. don’t address the topic directly, but warn against drawing direct connections between predation numbers and potential effects on population dynamics:

“Our estimates of the total numbers of animals brought home by cats throughout Britain should be treated with requisite caution and these figures do not equate to an assessment of the impact of cats on wildlife populations.” [3]

Unfortunately, other researchers have used this study to make exactly that connection. In “Critical Assessment,” for example, Longcore et al. cite Woods et al. (along with Lepczyk et al. 2003, the subject of a future post) when they write, “evidence indicates that cats can play an important role in fluctuations of bird populations.” [11]

Under-Compensating?
In their 2008 study, Baker et al. found that “birds killed by cats in this study had significantly lower fat and pectoral muscle mass scores than those killed by collisions,” [17] suggesting that they may have been among the “doomed surplus” portion of the population. Similar results were reported eight years earlier by Møller and Erritzøe, who found that “small passerine birds falling prey to cats had spleens that were significantly smaller than those of conspecifics that died for other reasons,” concluding ultimately that the birds killed by cats “often have a poor health status.” [18]

But Baker et al. express caution about their findings:

“…the distinction between compensatory and additive mortality does… become increasingly redundant as the number of birds killed in a given area increases: where large numbers of prey are killed, predators would probably be killing a combination of individuals with poor and good long-term survival chances.”

Whatever their concerns, it must be noted that Baker et al. inflated their predation numbers by a factor of 3.3 on the basis of Kays and DeWan’s dubious conclusions [9] (which I discussed in some detail previously). Doing so raises considerable doubts about any level of “redundancy,” as well the authors’ suggestion that cat predation in the area might be “creating a dispersal sink for more productive neighboring areas.” [19] (Such “sinks” can occur when predation outstrips local prey populations, requiring that prey be “recruited” from surrounding areas.)

Implications
Given all the work that’s been done on cat predation, one might expect the subject of compensatory predation to be addressed more fully and more often. By omitting this important issue from the feral cat/TNR discussion, researchers portray a situation both simpler and harsher (in terms of what it implies about the impact of free-roaming cats) than reality suggests. Whether or not such omissions are intentional, I cannot say. I do, however, find it curious—what’s included compared to what’s left out, and by whom.

References
1. Lepczyk, C.A., et al., “What Conservation Biologists Can Do to Counter Trap-Neuter-Return: Response to Longcore et al.” Conservation Biology. 2010. 24(2): p. 627-629.

2. Coleman, J.S. and Temple, S.A., On the Prowl, in Wisconsin Natural Resources. 1996, Wisconsin Department of Natural Resources: Madison, WI. p. 4–8. http://dnr.wi.gov/wnrmag/html/stories/1996/dec96/cats.htm

3. Woods, M., McDonald, R.A., and Harris, S., “Predation of wildlife by domestic cats Felis catus in Great Britain.” Mammal Review. 2003. 33(2): p. 174-188.

4. Churcher, P.B. and Lawton, J.H., “Predation by domestic cats in an English village.” Journal of Zoology. 1987. 212(3): p. 439-455.

5. Coleman, J.S. and Temple, S.A., “Rural Residents’ Free-Ranging Domestic Cats: A Survey.” Wildlife Society Bulletin. 1993. 21(4): p. 381–390.

6. Coleman, J.S. and Temple, S.A., Effects of Free-Ranging Cats on Wildlife: A Progress Report, in Fourth Eastern Wildlife Damaage Control Conference. 1989: University of Nebraska—Lincoln. p. 8–12. http://digitalcommons.unl.edu/ewdcc4/7

7. Hawkins, C.C., Impact of a subsidized exotic predator on native biota: Effect of house cats (Felis catus) on California birds and rodents. 1998. PhD Dissertation, Texas A&M University.

8. Hawkins, C.C., Grant, W.E., and Longnecker, M.T., “Effects of Subsidized House Cats on California Birds and Rodents.” Transactions of the Western Section of the Wildlife Society. 1999. 35: p. 29–33.

9. Kays, R.W. and DeWan, A.A., “Ecological impact of inside/outside house cats around a suburban nature preserve.” Animal Conservation. 2004. 7(3): p. 273-283.

10. Lepczyk, C.A., Mertig, A.G., and Liu, J., “Landowners and cat predation across rural-to-urban landscapes.” Biological Conservation. 2003. 115(2): p. 191-201.

11. Longcore, T., Rich, C., and Sullivan, L.M., “Critical Assessment of Claims Regarding Management of Feral Cats by Trap–Neuter–Return.” Conservation Biology. 2009. 23(4): p. 887–894.

12. Dauphiné, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2010. p. 205–219

13. Coleman, J.S., Temple, S.A., and Craven, S.R., Cats and Wildlife: A Conservation Dilemma. 1997, University of Wisconsin, Wildlife Extension. http://forestandwildlifeecology.wisc.edu/wl_extension/catfly3.htm

14. Andersen, M.C., Martin, B.J., and Roemer, G.W., “Use of matrix population models to estimate the efficacy of euthanasia versus trap-neuter-return for management of free-roaming cats.” Journal of the American Veterinary Medical Association. 2004. 225(12): p. 1871-1876.

15. Beckerman, A.P., Boots, M., and Gaston, K.J., “Urban bird declines and the fear of cats.” Animal Conservation. 2007. 10(3): p. 320-325.

16. n.a., What the Cat Dragged In, in Catnip. 1995, Tufts University School of Veterinary Medicine: Boston, MA. p. 4–6

17. Baker, P.J., et al., “Cats about town: is predation by free-ranging pet cats Felis catus likely to affect urban bird populations? Ibis. 2008. 150: p. 86-99.

18. Møller, A.P. and Erritzøe, J., “Predation against birds with low immunocompetence.” Oecologia. 2000. 122(4): p. 500-504.