They Tried to Make Me Go to Rehab

In what I can only imagine was intended to be a dramatic headline, the Washington Post announced last week: “A wildlife rehab center confirms that cats are killers.” Did we really to confirm that domestic cats are, just like their wild relatives, predators?

Apparently so.

What’s next? A Sunday magazine feature investigating the presence of gravity, perhaps? Or a three-part series, complete with online photo gallery, on heliocentrism? We can only hope. In the meantime, what exactly did this wildlife rehab center learn about the hunting habits of outdoor cats? Read more

Conservation Biology, Outdoor Cats, and the Magic 8-Ball

For too many in Hawaii’s conservation community, the answer is always the same—regardless of the question being asked.

Examining the ongoing campaign to eradicate Hawaii’s outdoor cats, one soon discovers a familiar pattern: the rationale is often based on flawed science (often produced by government agencies). But, perhaps because of conservation concerns more desperate than those on the mainland, there’s an unsettling tendency to “interpret” scientific evidence in a way that will implicate cats regardless of a study’s actual results.

No matter what the research question, it seems the answer is invariably “cats.”

Witness, for example, a paper published earlier this year in the Journal of Wildlife Diseases, in which the authors suggest that outdoor cats pose a threat to Hawaii’s state bird, the Nene (or Hawaiian goose), by spreading the parasite Toxoplasma gondii. One problem: the island where the researchers found the greatest seroprevalence of T. gondii infection among the birds, Molokai, just so happens to be home to perhaps the most dramatic increase in their numbers in recent years. Read more

You Can’t Get There from Here: A Response to Lohr and Lepczyk

The following comments were submitted by Frank Hamilton, president of the Animal Coalition of Tampa, Martha Girdany of the Kauai Community Cat Project, and myself, in response to Conservation Biology’s publication of “Desires and Management Preferences of Stakeholders Regarding Feral Cats in the Hawaiian Islands.”

Unfortunately, our critique of this badly flawed work was rejected by the journal. As editor-in-chief Mark Burgman explained, “the reviewers and handling editor have substantial concerns … the reviewers noted important and consistent concerns, the most significant of which is that the methodological issues raised in the comment were not sufficient to warrant publication.” Not surprisingly, my co-authors and I strongly disagree, and regret that Cheryl Lohr and Christopher Lepczyk were not required to defend their work (a trivial undertaking if, as the reviewers suggest, our concerns were off-base or overblown).

One often hears that science is self-correcting. The present case, however, supports the assertion, made in a 2012 Atlantic article, that self-correcting science is largely a myth.

•     •     •

In “Desires and Management Preferences of Stakeholders Regarding Feral Cats in the Hawaiian Islands,” authors Cheryl Lohr and Christopher Lepczyk [1] report, based on their analysis of survey results, that “live capture and lethal injection was the most preferred technique and trap-neuter-release was the least preferred technique for managing feral cats” in the Hawaiian islands. As we will demonstrate, however, a variety of flaws with the authors’ survey, sampling, and analysis undermine these claims. The study’s shortcomings, both technical and philosophical, are too numerous to address here; we will focus our attention, therefore, on the factors that contribute most significantly to Lohr and Lepczyk’s results, conclusions, and recommendations. Read more

Thinking Inside the Box

It’s difficult to determine how these things get started—how the results of a well-documented experiment conducted nearly 40 years ago become twisted into the frequently made—and widely-accepted—claim that “even well-fed cats hunt.”

This would appear to be a case of validity through repetition: repeat a claim often enough and, eventually, people will come to believe it’s true—never bothering to check the original source. (Pro Tip: For added efficacy, click the heels of your ruby-red slippers together while repeating the claim.)

This, it should go without saying, is not how science is supposed to work. Read more

JAVMA Letter: A Trojan Horse

TNR opponents’ recent letter to the editors to JAVMA was just an excuse for promoting their witch-hunt agenda—supported, as has become their habit, with the kind of bogus “research” that fails to stand up to even moderate scrutiny. (And, I would bet, probably hasn’t actually been read by most of the letter’s co-authors.)

A recent letter to the editor, published last month in the Journal of the American Veterinary Medical Association (PDF available here), reminds me of one of the reasons I’ve never enabled comments on this blog: the likelihood that some commenters would surely hijack the conversation—pretty much any conversation, however marginally relevant—to take up their own agenda. Although I’m a proponent of open dialogue (the name of this blog is no accident), I have neither the time nor the patience for people intent on making my platform their platform.

Luckily, the JAVMA editors—dealing, as I’m sure they do, only with the most conscientious professionals—aren’t subject to such hijack attempts. Right?

Guess again. Read more

The Show Must Go On!

On May 25, 2011, J. Scott Robinson, Director of the Office of Sponsored Projects for the Smithsonian Institute, sent a three-page proposal (PDF) to Randy Dettmers, a biologist in the Division of Migratory Birds for the U.S. Fish and Wildlife Service, outlining the scope and budget for a project called “Effects of subsidized predators on bird populations in an urban matrix.”* The work was to begin in just one week and continue through the end of September, conducted by Smithsonian Conservation Biology Institute researchers Peter Marra and Nico Dauphiné.

“We look forward to working with you on this important project,” Robinson wrote in closing.

The budget request was just $14K, but it’s difficult to imagine any proposal being approved and funded in a week—never mind one with a three-day holiday weekend. For this particular proposal, though, there was more than the usual bureaucracy to contend with.

Two weeks earlier, on May 11, Dauphiné had been arrested, charged with attempted animal cruelty for trying to poison neighborhood cats outside her Park Square apartment building. Read more

Garbage In, Garbage Out

By now—just about 72 hours after the story broke—it’s probably more difficult to find people who haven’t heard about the Smithsonian study claiming “that free-ranging domestic cats kill 1.4–3.7 billion birds and 6.9–20.7 billion mammals annually” [1] than it is to find people who’ve heard the news somewhere—the New York Times, the BBC, NPR’s All Things Considered, or any number of other media outlets.

Very few scientific papers receive the kind of press coverage that’s been given “The impact of free-ranging domestic cats on wildlife of the United States,” published in the online journal Nature Communications. Then again, very few studies make the kinds of claims made by the paper’s authors—claims the media has accepted without the slightest bit of scrutiny. Which is, unfortunately, to be expected.

And, I suspect, exactly what these researchers intended. Though they describe their work as a “data-driven systematic review,” [1] it’s difficult not to see it as part of a concerted effort to undermine TNR. Read more

Opinions from the Front Lines, or Fog of War?

A recent study finds important differences between cat caretakers and bird conservationists when it comes to their attitudes and beliefs about the impacts of free-roaming cats and how to best manage them. In the end, however, the methods employed lead to far more questions than answers.

“Because western society’s orientations toward wildlife is becoming more moralistic and less utilitarian,” explain the authors of a study recently published online in PLoS ONE, “conservation biologists must develop innovative and collaborative ways to address the threats posed by feral cats rather than assuming wholesale removal of feral cats through euthanasia is a universally viable solution.” [1] Not surprisingly, the authors fail to acknowledge that “euthanasia” hasn’t proven to be a viable [see Note 1] solution anywhere but on small oceanic islands. Still, given the sort of recommendations typically generated by the conservation biology community on this subject, I suppose we have to recognize this as some kind of progress. Read more

Exploring Other Dimensions

Imagine yourself responding to a survey, and one of the questions posed is this:

How much do you enjoy seeing feral cats in the environment?

Optional responses include: very much, somewhat, no opinion, very little, and none at all.

If your experience is anything like mine, the question isn’t nearly as straightforward as it first appears. If we’re talking about the feral cat that I’ve been feeding for more than two years now—who rolls around in the grass to show me how happy he is to see me, and then becomes bashful when I try to pet him—the answer is very much. The pleasure centers in my brain are, I’m sure, lighting up like the Fourth of July.

If, on the other hand, I spot a pair of eyes peering out from behind a dumpster just a few minutes later, my heart sinks. No enjoyment in that at all.

It’s a trick question, but in the usual sense. It’s not so much that the question trips up the respondent up—though, clearly, that’s a strong possibility. What’s more problematic is the fact that the researcher posing the question doesn’t actually know what a particular answer means.

Which encounter am I thinking of when I answer? It makes all the difference in the world, but that critical bit of context is lost due to the blunt nature of the research instrument. That’s the trouble with surveys: to borrow a phrase from former Secretary of Defense Donald Rumsfeld, we don’t know what we don’t know.

And yet, such surveys are the foundation of human dimensions research, the investigation of attitudes, beliefs, and values—along with their underlying drivers—surrounding a particular issue.

Human dimensions research is fascinating stuff, especially as it relates to animal welfare—and, in particular, free-roaming cats and TNR. But what happens when we jump in thinking we know what we don’t know—and then use the results to shape policy? (Here’s a hint: it can’t be good.)

Worse, what happens when the respondents are misinformed—perhaps even (knowingly or not) by the very people asking the questions?

These are some of the questions I posed during presentations at the Vertebrate Pest Conference’s Feral Cats session last week. The responses were, I’m afraid, disappointing. As was the fact that I was the only one asking.

Most unsettling, though, was the conviction with which both researchers presenting human dimensions work* responded—utterly unconcerned, it seemed, with the suggestion that the results of their hard work may not, in the end, be terribly meaningful. It’s hardly what one expects from bright, ambitious PhD candidates.

Not knowing what you don’t know is one thing; not wanting to know is something else altogether.

*I may not have the wording exactly right, but the question I refer to at the beginning of this post is “real,” in that it’s among those being used by one of the presenters.

Video Games

Northern mockingbirdNorthern mockingbird. Photo courtesy of Wikimedia Commons and Ken Thomas.

“I thought the cats probably really hammered them when they were fledglings,” said former University of Florida doctoral student Christine Stracey in a press release about her study of Northern mockingbirds, “but when they were in the nests, I didn’t really expect the cats to be a huge problem. But I was really wrong about that.”

So, how big a problem are “the cats,” exactly?

No doubt it depends who you ask. But even Stracey, now an assistant professor of biology at Westminster College in Salt Lake City, seems to have rather different opinions on the matter.

In a paper documenting her research, to be published in Biological Conservation, Stracey readily acknowledges the limitations of her work:

“Before we can fully understand the role of nest predation in shaping urban bird communities, we need studies of a suite of species that do and do not thrive in urban environments and we need to study how predator diets change on a rural-urban gradient.” [1]

In the press release, however, Stracey’s not nearly so reserved: “We don’t see any reason why cats wouldn’t also eat cardinal nestlings, brown thrashers, towhees—anything else that is nesting in similar locations.” Noting that some of the cats caught on camera were wearing collars, she warns:

“People should not let their cats roam outdoors at all, but at the very least, keeping them inside at night will cut down on nest predation. Beyond that, we need to think hard about the feral cat problem.”

No wonder the story was picked up so enthusiastically by science sites (e.g., “To Kill a Mockingbird, Just Get a Cat” and “Cats No. 1 Predator to Urban Mockingbird Nests”).

While I agree completely that “we need to think hard about the feral cat problem,” I’m not convinced by Stracey’s work that cats are having any appreciable impact on the population of Gainesville’s Northern mockingbirds—never mind “anything else that is nesting in similar locations.” Indeed, Stracey herself describes the Northern mockingbird as an “urban winner,” and a “native species that is able to not only live with us, but do really well living with us.”

Well, which is it?

The Study
Stracey’s Biological Conservation paper combines the results of her work videotaping nest predators with data from 2005 and 2006, when she and her advisor, Scott Robinson, “documented [without the use of cameras] reduced nest predation in urban habitats at many of the same study sites.” [1]

The later work, conducted for her PhD thesis, involved collecting “data on nest predation rates at seven study sites (two parking lots, three residential neighborhoods, two pastures, and one wildlife preserve) in areas in and around Gainesville, FL between February and August of 2007–2008.” [1] In 2009, “one of the residential neighborhoods, one of the parking lots, and one of the pastures” were not included. [1]

Over this same period, Stracey used video cameras (clips are available at her Website) mounted at several nest locations (eight in 2007, 52 in 2008, and 84 in 2009) “to compare the identity of nest predators at nests in the urban matrix and non-urban habitats.” [1] Which, presumably, will shed light on the generally accepted urban nest predator paradox, which Stracey describes as the “mismatch between predation rates, which are often lower in urban areas, and predator abundance, which is often higher in urban areas.” [1]

In other words: if there are so many more predators is urban areas, why do predation levels tend to be lower?

Nest Survival
Using the logistic exposure method, Stracey calculated daily survival rates for Northern mockingbird nests for each habitat and each year of her study.

Here, the daily survival rate (DSR) is a measure of the odds that the eggs or nestlings will remain in the nest from one day to the next. A DSR of 90 percent, for example, means there’s a 90 percent chance—or nine-to-one odds—of a nest surviving from day to day. Or, to put it another way, there’s a 10 percent chance that the nest’s contents will be destroyed by a predator. (More generally, DSR includes any nest “failure,” but because Stracey was interested in predation, she “only considered nests that failed due to predation as ‘unsuccessful,’ thus her “daily survival rates… are not a measure of overall nest survival, but rather the probability of a nest escaping predation.’’ [1])

Nine-to-one odds sound great if you’re in Las Vegas, but no winning streak lasts forever. Over the course of the entire nest cycle, even a DSR of 96 or 97 percent takes its toll.

In the case of the Northern mockingbird, it takes about 13 days for the eggs to hatch and another 12 for the subsequent nestling stage. [2] (At least this is what Fischer found working in south Texas; Stracey doesn’t go into such details in her paper.) A DSR of 97 yields a 46.7 percent nest survival rate; a DSR of 96, only 36 percent (and this doesn’t take into account the additional “3 to 5 days for nest construction [and] 3 to 5 days for egg laying” observed by Fischer, who found that “a successful nest was used for an average of 33 days.” [2])

Assuming (conservatively) that there was essentially no risk of predation prior to the eggs being hatched, I used Stracey’s DSR data and a nest cycle of 25 days to estimate nest survival rates. (I also reordered the data to better compare habitats year-to-year.)

The result illustrates three important points:

  1. The residential neighborhoods—the only sites where cats were observed predating nests (more on that shortly)—are safer than either of the non-urban sites (the two pastures and the wildlife preserve) during 2005 and 2006, when cameras weren’t in use. (While I’m not suggesting that this difference is the result of the cameras, I’m not convinced that the cameras were as impartial as Stracey would have us believe—this, too, will be addressed shortly.) Indeed, even during 2007–2009, the results are, at best, mixed.
  2. The wildlife preserve, contrary to what its name suggests, fails to “outperform” the other habitats’ nest survival rates across all five years—sometimes (as in 2005, when the rate was just over 14 percent) spectacularly.
  3. Perhaps the most striking result, though, is the nest survival rates of Stracey’s two parking lot sites, which, in every year but 2008, top those of the other habitats—two to four times the rates documented at the wildlife preserve in some years. “Urban winner” is right. With apologies to Joni Mitchell, then, perhaps the best thing for the mockingbirds is to pave paradise and put up a parking lot.

Strong Nest Predators
My interest in Stracey’s work has less to do with nest survival itself, and much more to do with the role of cats in nest failure. Of the 24 predation events caught on tape in the residential neighborhoods, 17 (71 percent) were attributed to cats. By contrast, no cats were observed predating nests in the pastures or at the nature preserve. There, Cooper’s hawks were responsible for 15 of 33 (45 percent) predation events taking place at occupied nests. (One abandoned nest was raided by a blue jay.)

“I found no evidence,” writes Stracey, “that urban areas provide a refuge from strong nest predators.” [1]

“The strongest predator, cats, were essentially only found in urban areas, and Cooper’s hawks, the dominant predator in rural habitats, were found at roughly the same abundance in the two habitats (pers. obs.)… These results suggest that simple considerations of predator abundance do not explain habitat-specific patterns of nest predation.” [1]

Dig into the details of Stracey’s study, though, and it becomes clear that she’s probably overestimating the strength of cats as urban predators. In fact, her camera placement (intentionally or not) almost certainly biased her data.

Stracey didn’t use nest cameras in the parking lots “for fear of theft,” [1] a perfectly reasonable concession, but that means excluding approximately 36 percent (according to my calculations) of “urban” nest predation from her “whodunit” data set. And it’s easy to imagine that predation at these sites was skewed heavily toward predators other than cats (probably birds).

In terms of identifying individual predators, then, “urban” habitats include only residential neighborhoods.

Stracey also eliminated as candidates for video cameras 21 (7 percent) nests located more than 4 meters (approximately 13 feet) off the ground. These nests would seem to be largely inaccessible to cats. Similarly, she eliminated 18 of 124 (14.5 percent) of nests “located in trees that were right on the edge of a sidewalk or street that did not afford a place to hide the set-up.” [1] Again, perfectly understandable, but this almost certainly biased her results.

In short, it seems Stracey observed predation by cats largely because she placed the cameras where the cats were.

In addition to the 58 events caught on camera, “22 predation events were missed due to problems with the camera set-up, including drained batteries and damaged wires.” [1] Whether or not these incidents were evenly distributed across the three different habitats isn’t clear, and the implications could be significant.

As it is, the majority (58.6 percent) of videotaped predation occurred at non-urban sites; had the bulk of the technical problems (which accounted for 27.5 percent of the 80 predation events Stracey had the opportunity to videotape) also occurred at those sites, Stracey would have a more difficult time concluding, as she does, that “urban areas clearly do not provide a generalized refuge from nest predators.” [1]

Or maybe not. Even if Cooper’s hawks accounted for twice the nest predation as cats, I suspect the focus would merely shift from absolute predation rates to predation by non-native predators.

Neophobia
And finally there’s the question of whether the nest cameras had any effect on predation levels. Stracey says they didn’t, but it appears that she simply compared failure rates for nests with and without cameras for each year the cameras were in use.

Richardson et al. (whose work Stracey cites) point out that “expression of neophobia and wariness among larger mammals, corvids, and raptors is likely to differ according to the extent to which those predators have been persecuted [inline citations omitted]. Such variation should be considered when interpreting the results of camera studies from different habitats and among different groups of nest predators.” [3, emphasis mine]

“Although camera equipment at nests likely does attract the attention of generalist predators, we propose that many predators may not respond positively to these potentially novel objects. Some small rodents, in particular, can be highly neophobic, reacting to novel stimuli with extreme caution and often avoidance (Barnett and Cowan 1976, Innes 1978). Though seemingly fearless and inquisitive, wild corvids likewise can be highly neophobic, particularly toward objects that do not resemble natural food items (Coppinger 1969, Heinrich et al. 1995), which may explain why Thompson et al. (1999), expecting to document nest predation by American crows and blue jays based on their abundance at the study site and their reputation as nest predators, did not record predation by any corvids. Raptors may exhibit a degree of neophobia as well (Ruggiero et al. 1979). Both canids and corvids have demonstrated aversion toward remote camera equipment, possibly driven more by wariness of human activity than generalized neophobia (Hernandez et al. 1997, Harris and Knowlton 2001, Herranz et al. 2002, Sequin et al. 2003). For nest studies using remote cameras, neophobia may be reinforced by the fact that camera equipment is seldom left in place for >2 weeks. As nests fail or fledge, camera equipment is relocated to active nests at new locations.” [3]

To illustrate what they mean by persecution, Richardson et al. cite the work of Herranz et al. (one of those in-line citations omitted above): “In our study area, Black-billed Magpies are shot and trapped by hunters, and this may increase their awareness of strange objects in the environment.” [4]

It seems reasonable, then, to expect that cats—the most “welcome” (especially those kept as pets) of the predators in Stracey’s study—would also be the least neophobic. (Though, of course, from a historical perspective, cats are arguably the most persecuted of the lot.)

It may well be, then, that Stracey caught more cats on camera largely because (1) the cameras were located—literally—in the cats’ backyards, and (2) the cats weren’t put off by the equipment.

•     •     •

I asked Stracey about all of this by way of e-mail, but received no response. My follow-up e-mail also went unanswered, but I did notice some Website traffic from the Salt Lake City area that same day. Of course, it could be nothing more than coincidence.

The same can be said for the traffic I saw from Columbus, OH, late last week on the same day I contacted Dr. Amanda Rodewald, professor of wildlife ecology at Ohio State University. From what I can tell, Rodewald had nothing to do with Stracey’s mockingbird study; nevertheless, she was quoted in the UF press release:

“There are a lot of loud voices that deny cats are important predators of birds in our cities… But this study shows clearly that cats were the dominant predator in this Florida system—and that wasn’t presumed, it was recorded on video, so it was fact.”

So, I sent Rodewald an e-mail—identifying myself as one of those “loud voices.” I explained that I wasn’t asking her to speak for Stracey, nor to defend the research. But, given her own research interest—and her obvious concern with Stracey’s work—perhaps she might be able to answer one question for me: What impact might we expect on the area’s Northern mockingbird populations if the cats were removed from the environment?

No response yet—though it’s only been a few days. Still, I’m not holding my breath.

Literature Cited
1.  Stracey, C.M., “Resolving the urban nest predator paradox: The role of alternative foods for nest predators.” Biological Conservation. 2011. In Press, Corrected Proof. http://www.sciencedirect.com/science/article/pii/S0006320711000449

2. Fischer, D.H., “Factors Affecting the Reproductive Success of the Northern Mockingbird in South Texas.” The Southwestern Naturalist. 1981. 26(3): p. 289–293. http://www.jstor.org/stable/3670907

3. Richardson, T.W., Gardali, T., and Jenkins, S.H., “Review and Meta-Analysis of Camera Effects on Avian Nest Success.” Journal of Wildlife Management. 2009. 73(2): p. 287–293. http://dx.doi.org/10.2193/2007-566

4. Herranz, J., Yanes, M., and Suárez, F., “Does photo-monitoring affect nest predation? Journal of Field Ornithology. 2002. 73(1): p. 97–101. http://dx.doi.org/10.1648/0273-8570(2002)073[0097:DPMANP]2.0.CO;2

Close Enough?

Among the findings of a recent study:

Five of 18 cats trapped “between the spring and fall of 2008 and 2009” in central Illinois’ 1,500-acre Robert Allerton Park tested positive for Toxoplasma gondii antibodies. Five of the seropositive cats were trapped at the same site; there, one white-footed mouse (of 21 trapped) also tested positive, and a gray squirrel tested negative. The site where the sixth seropositive cat was trapped revealed similar results among the “small home range” (SHR) mammals found there: one of 34 white-footed mice was seropositive; a fox squirrel was negative.

All of which means… what, exactly?

Although there were five times as many “infected” cats at the first site, infection rates among SHR mammals were only about one-and-a-half times as high as those at the second site. Put another way: given the infection rate among SHR mammals at the second site, one would have expected three seropositive SHR mammals at the first site.

In fact, a press release put out last week put a very different spin on Shannon Fredebaugh’s thesis work (downloadable PDF):

One third of the cats sampled were infected with T gondii, as were significant numbers of the wild animals found at every site. Animals that inhabit or range over territories of 247 acres (100 hectares) or more, such as raccoons and opossums, were more likely to be infected than those with smaller ranges.

But these animals “could have acquired T. gondii infection somewhere outside of the park,” said Nohra Mateus-Pinilla, a wildlife veterinary epidemiologist at the University of Illinois Prairie Research Institute and leader of the study. Animals with smaller home ranges likely picked up the infection close to where they were trapped, she said. This makes these animals good sentinels of disease in a natural area. “The small animals are screening the environment for us,” she said. “So when we sample one of those animals, we are really sampling their lifestyle.”

The absence of bobcats in the park combined with the occurrence of domestic cats and T. gondii infection in wildlife that inhabit small territories strongly suggest that feral, free-ranging or abandoned house cats are the source of the infection, Mateus-Pinilla said. Cats are vital for the survival of the parasite, and so they are—either directly or indirectly—spreading T. gondii to the wildlife in the park. “There’s no other option,” she said.

Well, “one third of the cats” certainly sounds more impressive than “six of 18.” And “significant numbers of the wild animals found at every site” had an undeniable allure to it—though, in fact, the statement applies only to the park’s “large home range” (LHR) mammals (mostly raccoons and opossums).

Far more troubling, though, is the alleged connection between cats, T. gondii, and infected SHR mammals.

Environmental Contamination
“If one infected cat defecates there, any area can become infected,” Fredebaugh said in the press release. “It just takes one cat to bring disease to an area.”

But, as Fredebaugh points out, “environmental detection of oocysts is difficult and was not evaluated in this study.” [1] She simply assumes a causal link between “infected” cats and environmental contamination: more seropositive cats means more contaminated soil.

In fact, Fredebaugh goes further, assuming that the mere presence of cats—seropositive or not—is the key factor in SHR infection rates. In addition to trapping data, she uses data from scent stations and motion detection cameras (which proved largely ineffective, capturing photos of just four cats over the course of the research) to designate each of the eight sites as either high or low “cat occurrence,” as indicated in the following table (please forgive the tiny type):

Table: Shannon Fredebaugh's Thesis

Fredebaugh acknowledges that “scent stations should only be used to identify trends in animal populations and as a supplemental tool in conjunction with other population estimates,” [1] thereby raising serious questions about their use in her study. (She’s not interested in trends, her scent station and trapping data correlate quite poorly, and her use of scent station data is hardly “supplemental.”)

But back to the environmental contamination.

Cats (both domestic and wild) are T. gondii’s definitive host—the animal in which the parasite reproduces sexually. Cats pass the mature, infective form of T. gondii in their feces—a process called “shedding oocysts.”

Although oocysts can survive in soil for up to 18 months, and are resistant to disinfectants, cats typically “shed oocysts only once in their life.” [see discussion in 2] Indeed, according to Dubey and Jones, “Most cats seroconvert after they have shed oocysts. Thus, it is a reasonable assumption that most seropositive cats have already shed oocysts.” [2]

So, who’s to say that the “infected” cats Fredebaugh trapped shed oocysts in the area where they were found? Indeed, we don’t even know that these cats shed oocysts in the park. It’s been suggested (based on a small sample of cats monitored closely from 1974 to 1977) that home ranges of unsterilized feral females can exceed 500 acres, while those of unsterilized feral males may approach 2,500 acres. (Even house-based males, which were also unsterilized, had large home ranges: 865–939 acres.) [3]

What’s more, Fredebaugh points out that, given their “relatively good physical condition,” some of these cats might have been “recently abandoned at RAP.” [1] In which case, they wouldn’t have been “contributing” any oocysts to the park’s soil—assuming they were seropositive to begin with.

Odds Ratios
Fredebaugh expresses her results using odds ratios, a measure easy enough to calculate but rather difficult to grasp intuitively (especially for those of us, myself included, unfamiliar with the measure). A page on the Children’s Mercy Hospital (Kansas City, MO) Website explains odd ratios this way:

“An odds ratio of 1 implies that the event is equally likely in both groups. An odds ratio greater than one implies that the event is more likely in the first group. An odds ratio less than one implies that the event is less likely in the first group.”

(Some examples are discussed in detail here.)

It seems to me that, in this case at least, odds ratios obscure more than they reveal. When Fredebaugh reports “a significant difference in the seroprevalence of T. gondii for SHR mammals at sites with a high frequency of cat occurrence,” we know nothing of sample size or the overall fit of the data (which, ranges from pretty good—for LHR mammals—to pretty lousy—for SHR mammals).

A simple x-y graph illustrates this point:

Chart: Shannon Fredebaugh's Thesis

By (mis?)representing the data in odds ratios, Fredebaugh suggests a connection that’s not actually supported by her research findings.

That said, she’s is hardly the first to imply causation where nothing more than correlation has been demonstrated (and, again, even that is dicey). In “The Impact of Free Ranging Cats,” a special section of the Spring Issue of The Wildlife Professional, for example, David Jessup and Melissa Miller argue that “the science points to cats,” but provide little more than “proximity” and “sheer numbers” to support their claim that “outdoor pet and feral domestic cats may be the most important source of T. gondii oocysts in near-shore marine waters.” [4]

(No?) Other Options
The fact that the researchers are so certain of their conclusions—that the only explanation for T. gondii in Robert Allerton Park is the presence of cats—is telling. I can’t help but think that they knew going in what they would find (a perception reinforced by what’s included in, and omitted from, Fredebaugh’s literature review, as described below).

In fact, Mateus-Pinilla’s comment—“There’s no other option.”—is challenged by several recent studies.

“Among white-footed mice,” writes Fredebaugh, “I found a 6 percent seroprevalence of T. gondii antibodies, which was high, compared to other studies… Mice have a short life span, thus the findings that mice, including some juveniles, were seropositive implies an active infection and recent T. gondii contamination in RAP.” [1]

Actually, researchers at the University of Salford’s Centre for Parasitology and Disease Research found an overall prevalence of 59 percent among the “200 mice… trapped from within houses in the Cheetham Hill area of Manchester.” [5] More important, they observed “high levels of congenital transmission… with 75 percent of female mice transmitting parasites to foetuses prior to birth” (emphasis added), leading them to conclude:

“These high levels of congenital transmission in this wild population of mice, taken together with other recent data on congenital transmission in sheep, suggests that this phenomenon might be more widespread than previously thought.” [5]

Fredebaugh, by contrast, mentions congenital transmission only in passing.

In another paper, researchers from the Centre for Parasitology and Disease Research challenge the conventional wisdom surrounding the transmission of T. gondii (note: I’ve removed several in-text citations for the sake of readability):

“The life cycle is well understood and three principal routes are recognised: ingestion of infective oocysts shed by the cat, consumption of undercooked meat containing Toxoplasma cysts and congenital transmission. Traditionally, the main route of infection is considered to be infection by oocysts deposited in faeces by the definitive host, the cat. This would imply that a high degree of contact with cats would be required to explain the very high prevalences found in many animal and human populations. Toxoplasma gondii has been reported in a very wide range of species. However, this also includes some species that would not normally come into contact with cats.” [6]

“Congenital transmission,” suggest Hide et al., “offers another possible mode of parasite transmission in the absence of cats.” [6]

“One way of determining the importance of transmission routes is to investigate transmission in a system where one of the routes of transmission is absent or minimal. For example, the carnivorous route could be excluded as a source of transmission in a herbivorous species such as sheep.” [6]

On the basis of multiple studies (see [7] and [8] for details of the study with sheep), Hide and his colleagues make a compelling argument that congenital transmission “may be more important than previously considered.” [6]

Researchers working in “the remote, virtually cat-free, high arctic islands of Svalbard” (the northern-most part of Norway) [9] came to similar conclusions. Among the “arctic foxes (n  = 594), Svalbard reindeer (n  = 390), sibling voles (n  = 361), walruses (n  = 17), kittiwakes (n  = 58), barnacle geese (n  = 149), and glaucous gulls (n  = 27),” tested, Prestrud et al. found T. gondii only in the arctic foxes (257, or 43 percent), geese (11, or 7 percent), and walruses (1, or 6 percent). [10]

“The finding of no seropositive reindeer or sibling voles,” they argue, “indicates that infection by oocysts is not an important mode of transmission on Svalbard.” [10] (Also of interest is their suggestion that the seropositive walrus demonstrates “that T. gondii is present in the marine food chain.” [10])

So where does the T. gondii come from?

“…we suggest that T. gondii most likely is brought to Svalbard by migratory birds that become infected in temperate agricultural areas in the winter. However, marine sources of infection may exist. The high seroprevalence of T. gondii in the arctic fox population on Svalbard may be due to: (1) infection from migratory bird species through predation; (2) vertical transmission; and (3) tissue cyst transmission within the Svalbard ecosystem through scavenging and cannibalism. Together, these transmission routes cause a surprisingly high seroprevalence of T. gondii in a top predator living in an ecosystem with very few cats.” [10]

A study of polar bears is further evidence that “other options” do indeed exist:

“In Svalbard cats are banned by the Norwegian authorities; however, a few cats may exist in Russian mining communities. Thus, the possibility of cats as a source of infection for polar bears cannot totally be excluded. Nonetheless, the existing cat population is very limited and local, and the proportion of seropositive polar bears is rather high, indicating that polar bears are commonly infected with T. gondii. It would, therefore, be inconceivable to assume that the few cats would play a major role in the epidemiology of T. gondii in the vast high Arctic. This is apparently the case in East Greenland as well.” [11]

As with the single seropositive walrus discussed above, the results of the polar bear study indicates “that there might be marine sources of T. gondii in the region.” [9]

And finally, in a paper published in 2009, Polish researchers proposed yet another possibility. The “high incidence of T. gondii found, among others, in free-living ruminants,” write Sroka et al., “suggests a possibility of other, so far unknown, paths of transmission of this protozoan.”

“Due to the fact that they are widespread, and tick-bites occur frequently both in humans and in animals, ticks might play an important role in toxoplasmosis transmission.” [12] (Note: the authors acknowledge both support for, and differing opinions about, the possibility of such a pathway.)

Fredebaugh mentions none of this work in her thesis; none of the author’s names appear in her lengthy list of references (which, to most people, probably appears comprehensive). And still, both she and Mateus-Pinilla (who chaired Fredebaugh’s thesis advisory committee) are committed to the proposition that, as Jessup and Miller suggest, “the science points to cats.”

Greater (Mis)Understanding
Fredebaugh concludes her thesis by suggesting that her results:

“provide a greater understanding of how feral cats and wildlife utilize natural areas in a highly fragmented landscape and how feral cat land use may impact wildlife parasite prevalence both directly and indirectly. With this information, I more clearly understand the association between wildlife and feral cats and can suggest better control strategies for feral cat populations. Using wildlife with small spatial scale habitat use as sentinels of parasite presence in the environment, I can gain a better understanding of the epidemiologic impact of T. gondii in different urban and rural settings to prevent human and wildlife infection. Further collaborative research is needed to determine the most effective management strategy for feral cat populations in natural areas and to evaluate the direct relationship between feral cats and their impacts on wildlife.” [1]

At the risk of being overly critical, I’m suggesting that Fredebaugh’s work has not only failed to clarify our understanding of feral cats, wildlife, and the transmission of T. gondii, but has—due to its problematic methodology and incomplete literature review—actually made matters worse (especially with regard to possible “control strategies”).

•     •     •

Not surprisingly, The Wildlife Society’s CEO/Executive Director Michael Hutchins immediately endorsed the study (his summary conveniently omits the small sample size involved, the inverse relationship between “infected” cats and “infected” SHR mammals, and several other important aspects of the research) and its misguided conclusions, pleading:

“How many more peer reviewed studies do we need to convince leaders to change the way that we are currently dealing with the feral cat population explosion in this country?”

I don’t want to suggest that Hutchins and I are on the same page here, but omit the word explosion, and that’s pretty much the same question I’ve been asking for a while now.

Literature Cited
1. Fredebaugh, S.L., Habitat Overlap and Seroprevalence of Toxoplasma Gondii in Wildlife and Feral Cats in a Natural Area. 2010, University of Illinois at Urbana-Champaign: Urbana-Champaign, IL. p. 88. http://www.ideals.illinois.edu/bitstream/handle/2142/16185/1_Fredebaugh_Shannon.pdf?sequence=6

2. Dubey, J.P. and Jones, J.L., “Toxoplasma gondii infection in humans and animals in the United States.” International Journal for Parasitology. 2008. 38(11): p. 1257–1278. http://www.sciencedirect.com/science/article/B6T7F-4S85DPK-1/2/2a1f9e590e7c7ec35d1072e06b2fa99d

3. Liberg, O., “Home range and territoriality in free-ranging house cats.” Acta Zoologica Fennica. 1984. 171: p. 283–285.

4. Jessup, D.A. and Miller, M.A., “The Trickle-Down Effect.” The Wildlife Professional. 2011. 5(1): p. 62–64.

5. Marshall, P.A., et al., “Detection of high levels of congenital transmission of Toxoplasma gondii in natural urban populations of Mus domesticus.” Parasitology. 2004. 128(01): p. 39–42. http://dx.doi.org/10.1017/S0031182003004189

6. Hide, G., et al., “Evidence for high levels of vertical transmission in Toxoplasma gondii.” Parasitology. 2009. 136(Special Issue 14): p. 1877-1885. http://dx.doi.org/10.1017/S0031182009990941

7. Morley, E.K., et al., “Significant familial differences in the frequency of abortion and Toxoplasma gondii infection within a flock of Charollais sheep.” Parasitology. 2005. 131(02): p. 181–185. http://dx.doi.org/10.1017/S0031182005007614

8. Morley, E.K., et al., “Evidence that primary infection of Charollais sheep with Toxoplasma gondii may not prevent foetal infection and abortion in subsequent lambings.” Parasitology. 2008. 135(02): p. 169–173. http://dx.doi.org/10.1017/S0031182007003721

9. Prestrud, K.W., et al., “Direct high-resolution genotyping of Toxoplasma gondii in arctic foxes (Vulpes lagopus) in the remote arctic Svalbard archipelago reveals widespread clonal Type II lineage.” Veterinary Parasitology. 2008. 158(1-2): p. 121–128. http://www.sciencedirect.com/science/article/B6TD7-4TDK6Y8-2/2/1e5b02861f7a0c81f2277f65f42e6be9

10. Prestrud, K.W., et al., “Serosurvey for Toxoplasma gondii in arctic foxes and possible sources of infection in the high Arctic of Svalbard.” Veterinary Parasitology. 2007. 150(1-2): p. 6–12. http://www.sciencedirect.com/science/article/B6TD7-4PYR4P2-2/2/fcc91fcf1d1426cd1b750bd3840bdb31

11. Oksanen, A., et al., “Prevalence of Antibodies Against Toxoplasma gondii in Polar Bears (Ursus maritimus) From Svalbard and East Greenland.” Journal of Parasitology. 2009. 95(1): p. 89–94. http://dx.doi.org/10.1645/GE-1590.1

12. Sroka, J., Szymańska, J., and Wójcik-Fatla, A., “The occurrence of Toxoplasma gondii and Borrelia burgdorferi sensu lato in Ixodes ricinus ticks from eastern Poland with the use of PCR.” Annals of Agricultural and Environmental Medicine. 2009. 16(2): p. 313–319.

Adult Supervision Required III

As I dig deeper into “Feral Cats and Their Management,” I continue to undercover discrepancies between the story Hildreth, Vantassel, and Hygnstrom are telling and what’s actually in the literature.

As I pointed out in my first post on the topic, Olof Liberg did not differentiate between native and non-native prey, as Hildreth, Vantassel, and Hygnstrom suggest. In fact, his reference to “natural prey” [1] was only to distinguish between food provided by humans and any wildlife that cats might consume.

While revisiting Liberg’s paper, though, I found something far more intriguing: it appears Hildreth, Vantassel, and Hygnstrom never made it past the abstract.

In their report, the authors write: “The diets of well-fed house-based cats in Sweden consisted of 15 percent to 90 percent native prey, depending on availability.” [2] But what Liberg is describing here is merely the range of prey brought in by all of the cats in the study, 80–85 percent of which were “well-fed house-based” (the others feral).

Liberg (1984) Figure 1

Moving beyond the abstract, however, the story gets even better. Averaged annually, wildlife makes up just 25–30 percent of the diet of the owned cats (see Fig. 1). Rabbits, being abundant in the area, make up the bulk, with birds—which, we’re made to understand, are of greatest concern for Hildreth, Vantassel, and Hygnstrom—comprising a couple percent at most.

*     *     *

Considering the brevity of the report’s Issues and Impacts section (roughly the same space as was allotted to lethal control methods), the authors managed to squeeze in a surprising amount of misinformation.

Literature Cited
1. Liberg, O., “Food Habits and Prey Impact by Feral and House-Based Domestic Cats in a Rural Area in Southern Sweden.” Journal of Mammalogy. 1984. 65(3): p. 424-432. http://www.jstor.org/stable/1381089

2. Hildreth, A.M., Vantassel, S.M., and Hygnstrom, S.E., Feral Cats and Their Managment. 2010, University of Nebraska-Lincoln Extension: Lincoln, NE. http://elkhorn.unl.edu/epublic/live/ec1781/build/ec1781.pdf

Adult Supervision Required II

In my haste to get my previous post online, I neglected to address a critical point (later brought to my attention by a particularly helpful reader). So, a brief follow-up…

In “Feral Cats and Their Management,” the authors point out—correctly, in this case—that “most feral cats (62 percent to 80 percent) tested positive for toxoplasmosis.” [1] But the rate of cats testing positive—or seroprevalence—is not a useful measure of their ability to infect other animals or people.

According to Dubey and Jones, “Most cats seroconvert after they have shed oocysts. Thus, it is a reasonable assumption that most seropositive cats have already shed oocysts.” [2]

“Testing positive,” in this case, is nothing more than the detection of antibodies resulting from seroconversion (the same process, by the way, that takes place in humans after receiving a flu shot).

And so, any argument for killing feral cats based on their high T. Gondii seroprevalence is deeply flawed (and, it should be obvious, on very shaky ground ethically). According to this line of reasoning, we might well consider quarantining humans testing positive for flu antibodies.

TNR: The Solution, Not the Problem
If T. gondii in feral cats is really the concern, then the focus should be on removing young cats from “high-risk” environments. Sound familiar? That’s a significant part of what TNR programs do.

As Dubey and Jones point out, T. gondii prevalence tends to be higher in feral cats than pet or owned cats. [2] So, getting kittens adopted—a key feature of TNR—reduces the likelihood of their becoming T. gondii “contributors” in the future.

And adoption numbers seem to be significant. In 2003, Merritt Clifton of Animal People, an independent newspaper dedicated to animal protection issues, suggested that “up to a third of all pet cats now appear to be recruited from the feral population.”

One can actually make the argument that TNR—dismissed more or less out of hand by Hildreth, Vantassel, and Hygnstrom—may well be the best defense currently available against the spread of Toxoplasmosis (not only in terms of stabilizing/reducing population numbers overall, but also in that it reduces number of kittens potentially exposed to T. gondii).

Hunting for Scapegoats
Finally, one more interesting note from Dubey and Jones (whose paper is referenced in “Feral Cats and Their Management”):

“In addition to live prey, eviscerated tissues (gut piles) from hunted deer and black bears would be a source of infection for wild cats… Prevalence of T. gondii in wild game and venison in the USA is very high and hunters need to be aware of the risk of transmission of infection to humans and, more importantly, spread of infection in the environment. The viscera of hunted animals need to be buried to prevent scavenging by animals, especially cats.” [2]

But Hildreth et al. prefer to focus (or, take aim, as the case may be) solely on feral cats. Though their motives aren’t clear to me, there’s no doubt whatsoever that they have little understanding of the key issues surrounding TNR—never mind the relevant science.

Literature Cited
1. Hildreth, A.M., Vantassel, S.M., and Hygnstrom, S.E., Feral Cats and Their Managment. 2010, University of Nebraska-Lincoln Extension: Lincoln, NE. http://elkhorn.unl.edu/epublic/live/ec1781/build/ec1781.pdf

2. Dubey, J.P. and Jones, J.L., “Toxoplasma gondii infection in humans and animals in the United States.” International Journal for Parasitology. 2008. 38(11): p. 1257-1278. http://www.sciencedirect.com/science/article/B6T7F-4S85DPK-1/2/2a1f9e590e7c7ec35d1072e06b2fa99d

3. Clifton, M. Where cats belong—and where they don’t. Animal People 2003 [cited 2009 December 24].  http://www.animalpeoplenews.org/03/6/wherecatsBelong6.03.html.

Adult Supervision Required

“Have you seen this already? This is awful.”

That’s what somebody posted on the Vox Felina Facebook page late last night—along with a link to an MSNBC news story. The headline was an attention-getter, no doubt about it: “Report: Kill feral cats to control their colonies.”

But beyond that, MSNBC had practically no details. A little digging around, however, led me to New England Cable News (NECN), which has the complete story.

“The report began in an undergraduate wildlife management class, with students writing reports on feral cats based on existing research. The students’ professor and other [University of Nebraska] researchers then compiled the report from the students’ work.” [1]

“Feral Cats and Their Management” claims, straightforwardly enough, to provide “research-based information on the management of feral cats.” [2] Management, in this case, meaning—as is so often the case in such contexts—killing, extermination, eradication, and so forth. Detailed advice is provided (e.g., “Body-gripping traps and snares can be used to quickly kill feral cats”).

And research? In this case, nothing more than a cursory review of all of the usual suspects: Coleman and Temple, Pamela Jo Hatley, Cole Hawkins, The Wildlife Society, Linda Winter. In other words, lots of Kool-Aid drinking.

It’s Like Science, Only Different
Among the research misinterpreted and/or misrepresented (none of which is cited in the text):

“As instinctive hunters, feral cats pose a serious threat to native wildlife, particularly birds.”

It’s no surprise that the authors of the report offer no evidence to support such a sweeping claim. “There are few if any studies,” write Mike Fitzgerald and Dennis Turner in their contribution to The Domestic Cat: The biology of its behaviour, “apart from island ones that actually demonstrate that cats have reduced bird populations.” [3]

Biologist C.J. Mead, reviewing the deaths of “ringed” (banded) birds reported by the British public, suggests that cats may be responsible for 6.2–31.3% of bird deaths. “Overall,” writes Mead, “it is clear that cat predation is a significant cause of death for most of the species examined.” Nevertheless, Mead concludes, “there is no clear evidence of cats threatening to harm the overall population level of any particular species… Indeed, cats have been kept as pets for many years and hundreds of generations of birds breeding in suburban and rural areas have had to contend with their predatory intentions.” [4]

The German zoologist Paul Leyhausen (1916–1998), who spent the bulk of his career studying the behavior of cats, found that cats, frustrated by the difficulties of catching them, “may soon give up hunting birds.” [5]

“During years in the field,” wrote Leyhausen, “I have observed countless times how cats have caught a mouse or a rat and just as often how they have stalked a bird. But I never saw them catch a healthy songbird that was capable of flying. Certainly it does happen, but, as I have said, seldom. I should feel sorry for the average domestic cat that had to live solely on catching birds.” [5]

“Cats kill an estimated 480 million birds per year (assuming eight birds killed per feral cat per year).”

Fitzgerald and Turner (whose work is not referenced in the report) argue that “we do not have enough information yet to attempt to estimate on average how many birds a cat kills each year.” [3] Though, of course, many studies have tried to do exactly that—few, it should be said, involve feral cats.

Unfortunately—and as I have pointed out time and time again—such work typically suffers from a range of methodological and analytical problems (e.g., statistical errors, small sample sizes, and inappropriate/baseless assumptions).

And—as with the UNL report—obvious bias.

“Estimates from Wisconsin indicate that between 500,000 and 8 million birds are killed by rural cats each year in that state…”

How anybody could misquote the numbers from the Wisconsin Study—easily the most widely circulated work on the subject—is a mystery. (On the other hand, the figures were, as Stanley Temple has said, “not actual data” [6] in the first place, so I suppose that does allow for some rather liberal interpretation.)

“The diets of well-fed house-based cats in Sweden consisted of 15 percent to 90 percent native prey, depending on availability.”

How important is it that the prey of feral cats is native, versus non-native? That’s a point of some debate—but not in this case. See, what Liberg actually wrote was this: “Most cats (80-85%) were house-based and obtained from 15 to 90% of their food from natural prey, depending on abundance and availability of the latter.” [7, emphasis mine] He was merely drawing the distinction between food provided by humans and any prey that cats might eat as food.

Liberg goes on to point out that the predation he documented did not, justify a conclusive assessment of the effects of cats on their prey populations, but… indicate[s] that cats by themselves were not limiting any of their prey.” [7] Even high rates of predation do not equate to population declines.

“In California, 67 percent of rodents, 95 percent of birds, and 100 percent of lizards brought home by cats were native species, and native birds were twice as likely to be seen in areas without cats.”

What looks to be truly damning evidence loses much of its impact when it’s seen in context. The reference to Crooks and Soulé’s 1999 paper, for example, omitted the sample size involved: “Identification of 68 prey items returned by cats bordering the fragments indicated that 67% of 26 rodents, 95% of 21 birds and 100% of 11 lizards were native species.” [8] It’s important to note, too, that these researchers asked residents to recall what kind of prey their cats returned—no prey items were collected—thereby raising questions about the accuracy of species attribution.

Furthermore, the cats involved with Crooks and Soulé’s study were all pet cats. How their habits compare with those of feral cats is an open question. Merritt Clifton of Animal People, an independent newspaper dedicated to animal protection issues, suggests, “feral cats appear to hunt no more, and perhaps less, than free-roaming pet cats. This is because, like other wild predators, they hunt not for sport but for food, and hunting more prey than they can eat is a pointless waste of energy.”

The second portion of the quote refers to Cole Hawkins’ PhD dissertation. Hawkins’ research methods and analysis are so problematic that the suggestion of a causal relationship between the presence of cats and the absence of birds (native or otherwise) is highly inappropriate (indeed, Hawkins scarcely investigates predation at all).

Among the key issues: Hawkins had no idea what the “cat” area of his study site was like before the cats were there; he merely assumes it was identical to the “no cat” area in terms of its fauna (though the two landscapes are actually quite different). It’s also interesting to note Hawkins’ emphasis on “the preference of ground feeding birds for the no-cat treatment” while downplaying the fact that five of the nine ground-feeding species included in the study showed no preference for either area. (For a more comprehensive analysis, please see my previous post on the subject.)

“…cats are the most important species in the life cycle of the parasite responsible for toxoplasmosis, and in 3 separate studies, most feral cats (62 percent to 80 percent) tested positive for toxoplasmosis.”

While cats are the “definitive host,” it’s important to note that “wild game can be a source of T. gondii infection in humans, cats, and other carnivores. Serologic data show that a significant number of feral pigs, bears, and cervids are exposed to T. gondii.” [9]

“Humans,” write Elmore et al., “usually become infected through ingestion of oocyst-contaminated soil and water, tissue cysts in undercooked meat, or congenitally. Because of their fastidious nature, the passing of non-infective oocysts, and the short duration of oocyst shedding, direct contact with cats is not thought to be a primary risk for human infection.” [10]

Toxoplasma gondii has been linked to the illness and death of marine life, primarily sea otters [11], prompting investigation into the possible role of free-roaming (both owned and feral) cats. [12, 13] It’s generally thought that oocysts (the mature, infective form of the parasite) are transferred from soil contaminated with infected feces to coastal waterways by way of freshwater run-off. [13]

However, a 2005 study found that 36 of 50 sea otters from coastal California were infected with the Type X strain of T. gondii [14], a type linked to wild felids (mountain lions and a bobcat, in this case), but not to domestic cats. [13] A recently published study from Germany seems to corroborate these findings. Herrmann et al. analyzed 18,259 fecal samples (all from pet cats) for T. gondii and found no Type X strain.  (It’s interesting to note, too, that only 0.25% of the samples tested positive for T. gondii). [15]

[NOTE: Please see follow-up post for additional information about cats and T. gondii.]

“Predation by cats on birds has an economic impact of more than $17 billion dollars [sic] per year in the U.S. The estimated cost per bird is $30, based on literature citing that bird watchers spend $0.40 per bird observed, hunters spend $216 per bird shot, and bird rearers spend $800 per bird released.”

According to this bizarre form of accounting, hunters value an individual bird more than 500 times as much as a birdwatcher does—suggesting, it seems, that dead birds are far more valuable than live birds. This is the kind of estimate that can be developed only through university (or perhaps government) research efforts.

Public Indecency
Stephen Vantassel, a wildlife damage project coordinator who worked on the study, said researchers were aware that some people would be ‘very offended that we offered any type of lethal control method.’ But he said the report was written for public consumption and wasn’t submitted to any science journals for publication.” [1]

For the record, Dr. Vantassel, I’m more offended by the way you’ve allowed such sloppy, grossly irresponsible work to pass for “research.” And the idea that such an undertaking is somehow acceptable because it’s meant for a mass audience is simply absurd!

Naturally, the American Bird Conservancy (ABC) embraced the report immediately, “with one official calling it ‘a must read for any community or government official thinking about what to do about feral cats.’” [1]

“‘Not surprisingly, the report validates everything American Bird Conservancy has been saying about the feral cat issue for many years—namely, TNR doesn’t work in controlling feral cat populations,’ Darin Schroeder, vice president of the Conservation Advocacy for American Bird Conservancy, said Tuesday.”

But validation requires far more than this report provides—beginning with a real interest in scientific inquiry and some basic critical thinking skills. And while we’re at it, a refresher in ethics wouldn’t hurt, either.

*     *     *

In my previous post, I’d indicated that my next post—this post—was going to focus on The American Bird Conservancy Guide to Bird Conservation. Obviously, something came up. Anyhow, the book will keep for a few more days…

Literature Cited
1. n.a. (2010) Report: Kill feral cats to control their colonieshttp://www.necn.com/11/30/10/Report-Kill-feral-cats-to-control-their-/landing_scitech.html?&blockID=3&apID=95afccc4d9564caf8e264f9d087f5732 Accessed December 1, 2010.

2. Hildreth, A.M., Vantassel, S.M., and Hygnstrom, S.E., Feral Cats and Their Managment. 2010, University of Nebraska-Lincoln Extension: Lincoln, NE. http://elkhorn.unl.edu/epublic/live/ec1781/build/ec1781.pdf

3. Fitzgerald, B.M. and Turner, D.C., Hunting Behaviour of domestic cats and their impact on prey populations, in The Domestic Cat: The biology of its behaviour, D.C. Turner and P.P.G. Bateson, Editors. 2000, Cambridge University Press: Cambridge, U.K.; New York. p. 151–175.

4. Mead, C.J., “Ringed birds killed by cats.” Mammal Review. 1982. 12(4): p. 183-186. http://dx.doi.org/10.1111/j.1365-2907.1982.tb00014.x

5. Leyhausen, P., Cat behavior: The predatory and social behavior of domestic and wild cats. Garland series in ethology. 1979, New York: Garland STPM Press.

6. Elliott, J. (1994, March 3–16). The Accused. The Sonoma County Independent, pp. 1, 10

7. Liberg, O., “Food Habits and Prey Impact by Feral and House-Based Domestic Cats in a Rural Area in Southern Sweden.” Journal of Mammalogy. 1984. 65(3): p. 424-432. http://www.jstor.org/stable/1381089

8. Crooks, K.R. and Soule, M.E., “Mesopredator release and avifaunal extinctions in a fragmented system.” Nature. 1999. 400(6744): p. 563.

9. Hill, D.E., Chirukandoth, S., and Dubey, J.P., “Biology and epidemiology of Toxoplasma gondii in man and animals.” Animal Health Research Reviews. 2005. 6(01): p. 41-61. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=775956&fulltextType=RA&fileId=S1466252305000034

10. Elmore, S.A., et al., “Toxoplasma gondii: epidemiology, feline clinical aspects, and prevention.” Trends in Parasitology. 26(4): p. 190-196. http://www.sciencedirect.com/science/article/B6W7G-4YHFWNM-1/2/2a468a936eb06649fde0463deae4e92f

11. Jones, J.L. and Dubey, J.P., “Waterborne toxoplasmosis – Recent developments.” Experimental Parasitology. 124(1): p. 10-25. http://www.sciencedirect.com/science/article/B6WFH-4VXB8YT-2/2/8f9562f64497fe1a30513ba3f000c8dc

12. Dabritz, H.A., et al., “Outdoor fecal deposition by free-roaming cats and attitudes of cat owners and nonowners toward stray pets, wildlife, and water pollution.” Journal of the American Veterinary Medical Association. 2006. 229(1): p. 74-81. http://avmajournals.avma.org/doi/abs/10.2460/javma.229.1.74

13. Miller, M.A., et al., “Type X Toxoplasma gondii in a wild mussel and terrestrial carnivores from coastal California: New linkages between terrestrial mammals, runoff and toxoplasmosis of sea otters.” International Journal for Parasitology. 2008. 38(11): p. 1319-1328. http://www.sciencedirect.com/science/article/B6T7F-4RXJYTT-2/2/32d387fa3048882d7bd91083e7566117

14. Conrad, P.A., et al., “Transmission of Toxoplasma: Clues from the study of sea otters as sentinels of Toxoplasma gondii flow into the marine environment.” International Journal for Parasitology. 2005. 35(11-12): p. 1155-1168. http://www.sciencedirect.com/science/article/B6T7F-4GWC8KV-2/2/2845abdbb0fd82c37b952f18ce9d0a5f

15. Herrmann, D.C., et al., “Atypical Toxoplasma gondii genotypes identified in oocysts shed by cats in Germany.” International Journal for Parasitology. 2010. 40(3): p. 285–292. http://www.sciencedirect.com/science/article/B6T7F-4X1J771-2/2/dc32f5bba34a6cce28041d144acf1e7c

Rap(tor) Sheet

Perhaps it’s an act of desperation, this “kitchen sink” approach favored by some free-roaming cat/TNR opponents. Throw everything—including the kitchen sink—into the anti-cat argument, and perhaps something will stick. Their impact on wildlife and the environment, for instance, or their threat to public safety—it seems there’s something for everybody. (Surely it’s only a matter of time before beach erosion, ozone depletion, and climate change are added to this growing rap sheet.)

But for those of us willing to sort through this quantity-over-quality smokescreen, such arguments rarely prove substantive.

I touched on this point in one of my first Vox Felina posts, referring to how the now-classic predation study conducted by William G. George has been misread, misinterpreted, and misrepresented. This work, perhaps more than any other, has been used to suggest an indirect impact of free-roaming cats on raptors.

George was very cautious about drawing such a connection, acutely aware of the speculative nature of his own work. In recent years, however, the details of George’s work—and his well-tempered conclusions—have given way to a kind of mythology, having been co-opted by scientists more interested in their own agendas than in rigorous scientific inquiry.

The Study
Over four years, from January 1, 1968 through December 31, 1971, George monitored and recorded with meticulous care the various small mammals his three cats killed on his “fallow farmland” property in rural Cobden, Illinois. “As predators on rodents,” writes George, “cats inevitably compete for prey with many of our declining raptors, and therein may lie a serious problem.” (emphasis mine) [1].

“I am not suggesting a cause-and-effect relationship exists between the historical increase of cats and the historical decrease of raptors; however, cats, which are as efficient in their way as guns and DDT, accompany and add another dimension to man’s encroachment into wildlife areas.” [1]

The trouble, of course, is that so many scientists citing George’s work have suggested exactly that.

The Myth
“Cat predation on mammals,” write Longcore et al., is “cause for concern because of direct impacts to native species and competition with native predators (George 1974).” [2] “Human-subsidized cats,” warn Guttilla and Stapp, “can spill over into less densely populated wildland areas where they reduce prey for native predators (George 1974).” [3]

Of course anybody who grew up, as I did, watching Wild Kingdom, knows that competition is a central theme of many stories played out in the natural world. But competition for prey is one thing; having an impact on the population of competitors is something else altogether.

Which is precisely what Loyd and DeVore—citing only George’s research—suggest: “Feral cats can also have a considerable impact on the broader health of ecosystems by outcompeting native predators (George 1974)…” [4]

Dauphiné and Cooper, too, interpret George’s work rather loosely, but also seem to offer additional evidence of the indirect impacts about which he speculated:

“In addition to having direct impacts on prey, cats compete with avian predators, such as American Kestrels (Falco sparverius), Northern Harriers (Circus cyaneus), and Redtailed Hawks (Buteo jamaicensis) (George 1974, Mosher 1989, Lepczyk et al. 2004). George (1974) estimated that cats killed 5.5 million rodents and other vertebrates in a 26,000 square mile area in Illinois, effectively depleting the prey base for wintering raptors and other native predators.” [5]

What did Lepczyk add to the conversation? Nothing, actually; he merely cited George’s study:

“… cats may be directly competing with avian predators, such as American Kestrels (Falco sparverius), Northern Harriers (Circus cyaneus) and Red-tailed Hawks (Buteo jamaicensis; George, 1974).” [6]

And Mosher? This one’s far more interesting. According to Dauphiné and Cooper, Mosher’s research reveals some compelling evidence:

“In a study in Maryland of Cooper’s Hawks (Accipiter cooperii) that depended heavily on eastern chipmunks (Tamias striatus) to feed nestlings, Mosher (1989) found that these raptors altered their diet to prey more on songbirds in an area where chipmunks were eradicated by cats. The resulting increase in hunting time and difficulty for Cooper’s Hawks was associated with a decrease in nestling survival.” [5]

But Mosher’s paper includes no mention of cats at all. In fact, he suggests only “that reproductive performance, especially in studies encompassing relatively small areas, may reflect natural phenomena such as dependence on a particular prey species that undergoes population fluctuations.” [7] I found an earlier paper by Mosher, also mentioning chipmunks and Cooper’s Hawks [8]—but again, no mention of cats.

It’s possible this is an honest mistake, that Dauphiné and Cooper merely included the wrong reference. However, I was unable to find a hint of any such research in my (admittedly brief) online sleuthing. And, given the sloppiness and bias that permeates the rest of their paper, nothing these two might do would surprise me.

(If, as Dauphiné and Cooper suggest, the real problem is that raptors are preying on songbirds rather than chipmunks, then shouldn’t we be doing everything in our power to increase the chipmunk population? It’s an absurd suggestion, of course—but only slightly more so than many accepted wildlife “management” practices.)

Getting back to George’s research, the winner for most distorted version undoubtedly goes to David Jessup, who writes with a certitude generally reserved for politicians, marketers, and novelists. Gone is the trepidation George expressed—first, regarding the impact of cat predation on rodent and other prey populations; second, regarding the relationship between these populations and the raptors that feed on them. For Jessup, who offers no additional evidence, it’s all very straightforward:

“Feral cats also indirectly kill native predators by removing their food base.” [9]

Local/Regional Raptor Update
So, how have those raptors fared in the subsequent 40 years? Certainly there are factors other than cats that would likely contribute to their decline—habitat fragmentation and destruction, for instance. Such environmental impacts have the potential to affect the birds themselves, clearly, but also their prey.

Research into the population trends of Red-tailed Hawks, Northern Harriers, and American Kestrels—three raptors identified specifically by George—suggests that his concerns were largely unfounded.

BBS Routes and Data
Only one Breeding Bird Survey (BBS) route runs into Union County, Illinois, where George’s property was located. Unfortunately, count data for BBS Route 34080 go back only to 1993. However, data for neighboring routes are available from the time of George’s study through 2006. Surveys along two nearby routes in Illinois (34059 and 34061) began in 1970; surveys of two others, along the eastern edge of Missouri (52001 and 52007), date back to 1967.

Selected BBS Routes: Missouri and Illinois

No BBS count data from the routes in question are available for Northern Harriers, suggesting that perhaps this species was, for one reason or another, simply not included. Data sets for other birds—the Red-shouldered Hawk, for example—exist despite frequent counts of zero (in the case of the Red-shouldered Hawk, just one bird was recorded along Routes 52001 from 1967 through 2006).

BBS data for Red-tailed Hawks indicate a rather dramatic population increase for the two southwestern Illinois routes, and slight increases for the same period across the two eastern Missouri routes, as indicated in the following graphs.

Red-tailed Hawks Four BBS RoutesBBS Data: Red-tailed Hawks for two Illinois and two Missouri routes (adapted from North American Breeding Bird Survey website)

Populations of American Kestrels (along the same routes and for the same period) remained mostly stable.

American Kestrels Four BBS RoutesBBS Data: American Kestrels for two Illinois and two Missouri routes (adapted from North American Breeding Bird Survey website)

The bottom line? If the area’s cats are out-competing the raptors for prey, there’s no evidence in the BBS count data.

Prairie Voles
Of particular interest to George were prairie voles, which made up “more than 41 percent of all captured vertebrates and 45 percent of the captured mammals.” [1] And whose reduced numbers, suggested George, “could well pose the principal threat to the success of wintering hawks in my area of study.” [1] But maybe the voles weren’t as important as George surmised.

In Minnesota, the declining population of prairie voles—significant enough to warrant “special concern species” status beginning in 1984—seems to have had no effect on the populations of Northern Harriers, Red-tailed Hawks, and American Kestrels. Indeed, BBS data indicate that these raptors’ numbers have fluctuated little over the past 40 years or so. (And, according to the Minnesota Department of Natural Resources, the reason for the state’s declining vole numbers has nothing to do with cats, but “is due almost exclusively to the destruction of its prairie habitat through plowing and over-grazing.”)

BBS Data: Three Raptors across MinnesotaBBS Data: Three raptor species across Minnesota (adapted from North American Breeding Bird Survey website)

Raptors Across the Country
Of course, isolating the relationship between the population of a predator and that of its preferred prey species is incredibly difficult; there are simply too many additional—often interdependent—factors that must be considered. Zooming out for a big-picture view of population dynamics across the U.S. only blurs such relationships, thereby complicating any subsequent analysis.

Nevertheless, I think it’s worth a look. George claimed (unfortunately, without referring to a specific source, and without specifying whether he was referring only to owned/pet cats) that there were 31 million cats in the U.S. at the time of his study. [1] Today, according to the American Pet Products Association’s 2009–2010 National Pet Owners Survey, there are 93.6 million.

Direct comparisons over this 40-year time frame are difficult for a number of reasons (e.g., lack of reliable data, the increasing proportion of indoor-only cats in recent years, etc.). But if, as some suggest, cats are having an negative impact on raptor populations—and there are now three times as many of them (not accounting for feral cats, whose numbers have also likely increased)—well, one might expect find these birds in dire straights by now.

Hawk Mountain Sanctuary
To see for myself, I turned to Hawk Mountain Sanctuary’s Conservation Status Reports. Located in east-central Pennsylvania, Hawk Mountain Sanctuary is, according to its website, “the world’s first refuge for birds of prey.”

The outlook for the Northern Harrier and Red-tailed Hawk is mostly good. “The Northern Harrier is considered secure in most of North America,” notes its 2007 conservation report, “but it is a species of concern regionally in many of the [Bird Conservation Regions] west of the Mississippi River.”

The Red-tailed Hawk, too, “is considered secure throughout most of its range in North America.

“Migration counts have declined in eastern North America since 1995, but concurrent increases in [Breeding Bird Surveys] and [Christmas Bird Counts] suggest that these migration trends may be the result of changes in migration geography or behavior. Elsewhere in North America, population monitoring generally indicates increasing or stable populations of this common raptor.”

American Kestrels, on the other hand, seem to be in trouble: “Overall, the data suggest substantial declines in populations… across much of North America, and consequently strong cause for conservation concern.” The factors affecting these declines are unknown and, the report notes, “warrant further investigation.” However, some patterns have been observed—“factors exerting negative influences on populations are strongest along the Atlantic coast,” for example. Also: “More recent declines in western North America… appear to have occurred in concert with a prolonged drought.”

The Cornell Lab of Ornithology’s website paints a rather different picture, noting that the population of American Kestrels “increased greatly with historical deforestation of North America. No significant trend across North America, but some local increases and decreases.”

*     *     *

All of which adds up to… what? Like the BBS data, the Hawk Mountain Sanctuary Conservation Status Reports reveal population trends perhaps best described as “mixed.” Nowhere is there any indication that declining raptor numbers can be linked to the success of competing predators—including cats.

For George, the idea was nothing more than a hypothesis anyhow. But rather than put it to the test (ostensibly the role of scientists), Longcore, Dauphiné, Jessup, and the rest, have instead tried to elevate its status through nothing more than repetition—thereby betraying an agenda that has little to do with science at all.

Literature Cited
1. George, W., “Domestic cats as predators and factors in winter shortages of raptor prey.” The Wilson Bulletin. 1974. 86(4): p. 384–396. elibrary.unm.edu/sora/Wilson/v086n04/p0384-p0396.pdf

2. Longcore, T., Rich, C., and Sullivan, L.M., “Critical Assessment of Claims Regarding Management of Feral Cats by Trap–Neuter–Return.” Conservation Biology. 2009. 23(4): p. 887–894.

3. Guttilla, D.A. and Stapp, P., “Effects of sterilization on movements of feral cats at a wildland-urban interface.” Journal of Mammalogy. 2010. 91(2): p. 482-489. http://dx.doi.org/10.1644/09-MAMM-A-111.1

4. Loyd, K.A.T. and DeVore, J.L., “An Evaluation of Feral Cat Management Options Using a Decision Analysis Network.” Ecology and Society. 2010. 15(4). http://www.ecologyandsociety.org/vol15/iss4/art10/

5. Dauphiné, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2009. p. 205–219. www.pwrc.usgs.gov/pif/pubs/McAllenProc/articles/PIF09_Anthropogenic%20Impacts/Dauphine_1_PIF09.pdf

6. Lepczyk, C.A., Mertig, A.G., and Liu, J., “Landowners and cat predation across rural-to-urban landscapes.” Biological Conservation. 2003. 115(2): p. 191-201. http://www.sciencedirect.com/science/article/B6V5X-48D39DN-5/2/d27bfff8454a44161f8dc1ad7cc585ea

7. Mosher, J.A., Accipiters, in Northeast Raptor Management Symposium and Workshop, B.A.G. Pendleton, Editor. 1989, National Wildlife Federation Scientific and Technical Series No. 13.: Syracuse, NY. p. 47–52.

8. Mosher, J.A., “Breeding Biology of Raptors in the Central Appalachians.” Raptor Research. 1982. 16(1): p. 18–24.

9. Jessup, D.A., “The welfare of feral cats and wildlife.” Journal of the American Veterinary Medical Association. 2004. 225(9): p. 1377-1383. http://avmajournals.avma.org/doi/abs/10.2460/javma.2004.225.1377

A Tale of Two Cities

Gray Catbird (Dumetella carolinensis)A Gray Catbird in Madison, Wisconsin, USA. Photo courtesy Wikimedia Commons and John Benson.

According to its website, the Smithsonian Migratory Bird Center is a “national and international leader in the biology and conservation of migratory birds.” When it comes to cats and their potential impact on birds, however, the SMBC apparently has a lot to learn.

Actually, they could use some pointers on professionalism, too—and maybe a refresher on the difference between correlation and causation.

Summarizing a recent study of gray catbird fledglings in the Washington, DC area, the SMBC claims that cats were responsible for “alarmingly high rates of nest predation and fledging [sic] mortality.” But there’s no mention of how such a connection was made. Indeed, “Baby Catbird Survival” offers very little in the way of details. Instead, readers are treated to sophomoric commentary:

“… several guilty-looking cats were found in close proximity to dead birds. Our guess is that closer examination would have revealed feathers in their whiskers.”

This is the Smithsonian? What I wouldn’t give to have been in the marketing meeting where “predation humor” was first proposed as an innovative, sure-fire scheme for attracting new donors and research funding.

Catbird Mortality
The study, spanning two summers, was conducted at three sites, two in Takoma Park, MD, and another—apparently less populated with cats—in Bethesda, MD. Somehow—again, no details are given—radio-tracking technology was used to monitor the mortality of young catbirds.

Results indicate that 85% of nests at the Bethesda site were “successful” (i.e., young catbirds survived long enough to leave the nest), compared to only 34% of nests at the Takoma Park sites. At the Bethesda site, 29% of fledglings survived to eight weeks of age, versus 14% at Takoma Park.

Given the rather dramatic nature of these findings, one might expect some explanation of the research methods and analysis techniques employed. Among the numerous questions left unanswered:

  • How was radio-tracking used to distinguish predation from other forms of mortality—or, more to the point, predation by cats from other forms of predation?
  • How were the sites selected, and the cats at each site counted?
  • What other factors (e.g., population density of humans, abundance of other predators, habitat availability and condition, etc.) might have been at work here?
  • What were the sample sizes employed?

At best—and this is being very generous—the results suggest correlation. But, of course, this is very different from causation.

In Proofiness, author Charles Seife uses the relationship between a country’s energy consumption and the life expectancy of its citizens to illustrate the difference. Plot the data and there is an unmistakable trend: as energy consumption increases, so does life expectancy.

“Yes, it’s true that the more power a society uses, the longer its citizens live, on average. It’s equally true, however, that the more garbage a society produces, the longer its people live. The more automobiles people in a society drive, the more newspapers people in a society read, the more fast food people consume, the more television sets people have, the more time people spend on the Internet…” [1]

So, are the Takoma Park cats the cause of catbird mortality? Who knows.

Who’s In Charge?
Exactly who’s responsible for “Baby Catbird Survival” is another mystery (though anonymity is understandable in this case, as it’s difficult to imagine any respectable scientist claiming ownership of something so flimsy and irresponsible). The researcher who oversaw the project, though, is Peter Marra, the SMBC scientist at the center of a recent Washington Post column (of which I was highly critical).

This, of course, is the same Peter Marra who, along with nine of his colleagues, has argued that “trap-neuter-return is essentially cat hoarding without walls,” and called for “legal action against colonies and colony managers.” [2] The authors also call on conservation biologists to “begin speaking out” against TNR “at local meetings, through the news media, and at outreach events.” [2] It’s a message Marra has obviously taken to heart.

There’s no doubt Marra has an agenda. The question is: how might this bias his research?

Untangling the Research
With so few details to go by, it’s difficult to scrutinize Marra’s catbird study. If it’s published, of course, greater transparency will be required. In the meantime, we do have some useful clues that—along with a little detective work—provide some insight.

Counting Cats
As I indicated previously, it’s hard to imagine that the only difference between the Takoma Park and Bethesda sites was the number of cats. Even if that were the case, though, absolute numbers are hardly the whole story. Numerous studies have demonstrated that predation success varies widely among domestic cats: some catch lots of prey while others catch very few—or none at all. [3–7]

That’s assuming they can get at the prey, of course.

Marra is clear in the Post piece that the (alleged) killers “aren’t feral cats; they’re domestic cats allowed to go outside.” But, contrary to what columnist Adrian Higgins suggests, studies have shown that about two-thirds of cats are indoor-only. [8–11] And of those allowed outside, approximately half spend less than three hours outdoors each day. [9, 10]

How sure can Marra be, then, that the areas’ pet cats are responsible for the deaths of young catbirds?

Predatory Habits
The author of “Baby Catbird Survival” claims that “domestic cats typically only decapitate birds and leave the carcass.” Now, I’ve become quite familiar with the research on the hunting behavior of cats over the past year or so, and recall seeing nothing to this effect. I recently revisited some key sources [12–15] just to be sure, and again found nothing to support this assertion. However, it was brought to my attention that some birds will decapitate their prey:

“In urban and suburban settings grackles are the most likely culprits, although jays, magpies, and crows will decapitate small birds, too. Screech-owls and pygmy-owls also decapitate their prey, but, intending to eat them later, they usually cache their victims out of sight.” [16]

“There is little you can do to discourage screech-owls if only because they do their killing under cover of darkness. However, you can recognize their handiwork by looking for partially plucked carcasses of songbirds with the heads missing… Corvids—crows, ravens, jays, and magpies—are well known for their raids on birds’ nests to take eggs and nestlings.” [17] (Interestingly, the author, David M. Bird, was among Marra’s nine co-authors on “What Conservation Biologists Can Do.”)

Again, how can Marra be so sure the cats are the culprits?

Catbird Population
And finally, what about Marra’s claim, as reported by Higgins, that “catbirds in cat-heavy areas are not able to reproduce at a rate that is sustainable”?

Data from the North American Breeding Bird Survey suggest that Maryland’s gray catbird population declined perhaps 7% between 1966–1989, a period during which the state’s human population grew approximately 35%.

BBS Data: Catbirds Across MarylandBBS Data: Gray Catbirds Across Maryland (adapted from the Atlas of the breeding birds of Maryland and the District of Columbia)

Even so, the Atlas of the Breeding Birds of Maryland and the District of Columbia—which includes the aforementioned BBS data in its assessment—reports that, “during the Atlas period [1983–87], gray catbirds were found throughout the state, including the most heavily urbanized blocks.” The Atlas goes on to note the bird’s “high tolerance for human activity,” concluding that “the gray catbird’s future in Maryland seems secure.” [18]

Indeed, the SMBC itself echoes the Atlas’ assurances:

“To thrive in these [fragmented] habitats birds must have special adaptations such as the ability to respond to frequent nest predation and parasitism and to forage on a wide variety of seasonally available foods. Armed with these adaptations, catbirds are well prepared for the disturbed habitats of the 21st century’s fragmented landscape.”

Still, statewide figures such as those complied in the Atlas can obscure as much as they reveal. Better to look at the detailed counts from individual survey routes. And it turns out data from BBS Route 46110, the nearest to the Takoma Park and Bethesda sites, actually trend upward in recent years. (Note: It’s important to point out that “the survey produces an index of relative abundance rather than a complete count of breeding bird populations.”)

BBS Data: Gray Catbirds Along Route 46110BBS Data: Gray Catbirds Across Route 46110 (adapted from North American Breeding Bird Survey website)

All of which has me wondering about Marra’s rather dire forecast for the area’s gray catbirds—in terms of the underlying science, of course, but also the possible motives behind such a statement.

*     *     *

Publishing dodgy science within the scientific community is one thing—hardly excusable, but there is at least a reasonable expectation that one’s peers are in a position to critically evaluate such research—but to package this kind of work for public consumption is truly irresponsible. Like Higgins’ column, “Baby Catbird Survival” is a Trojan Horse: unsubstantiated—and, potentially, highly damaging—claims “wrapped up” as valid science.

Brilliant from a marketing standpoint, maybe—but it’s hardly my idea of leadership.

I’ve attempted to contact both the SMBC and Peter Marra—expressing my concerns with “Baby Catbird Survival,” but also my interest in a more complete accounting of the study’s findings. Unfortunately, neither has responded.

SPECIAL THANKS once again to Louise Holton and Maggie Funkhouser at Alley Cat Rescue for bringing the Washington Post article to my attention.

Literature Cited
1. Seife, C., Proofiness: The Dark Arts of Mathematical Deception. 2010: Viking Adult.

2. Lepczyk, C.A., et al., “What Conservation Biologists Can Do to Counter Trap-Neuter-Return: Response to Longcore et al.” Conservation Biology. 2010. 24(2): p. 627-629.

3. Churcher, P.B. and Lawton, J.H., “Predation by domestic cats in an English village.” Journal of Zoology. 1987. 212(3): p. 439-455.

4. Woods, M., McDonald, R.A., and Harris, S., “Predation of wildlife by domestic cats Felis catus in Great Britain.” Mammal Review. 2003. 33(2): p. 174-188.

5. Baker, P.J., et al., “Impact of predation by domestic cats Felis catus in an urban area.” Mammal Review. 2005. 35(3/4): p. 302-312.

6. Baker, P.J., et al., “Cats about town: is predation by free-ranging pet cats Felis catus likely to affect urban bird populations? Ibis. 2008. 150: p. 86-99.

7. Barratt, D.G., “Predation by house cats, Felis catus (L.), in Canberra, Australia. II. Factors affecting the amount of prey caught and estimates of the impact on wildlife.” Wildlife Research. 1998. 25(5): p. 475–487.

8. ABC, Human Attitudes and Behavior Regarding Cats. 1997, American Bird Conservancy: Washington, DC. http://www.abcbirds.org/abcprograms/policy/cats/materials/attitudes.pdf

9. Clancy, E.A., Moore, A.S., and Bertone, E.R., “Evaluation of cat and owner characteristics and their relationships to outdoor access of owned cats.” Journal of the American Veterinary Medical Association. 2003. 222(11): p. 1541-1545.

10. Lord, L.K., “Attitudes toward and perceptions of free-roaming cats among individuals living in Ohio.” Journal of the American Veterinary Medical Association. 2008. 232(8): p. 1159-1167.

11. APPA, 2009–2010 APPA National Pet Owners Survey. 2009, American Pet Products Association: Greenwich, CT.

12. Tabor, R., Cats—The Rise of the Cat. 1991, London: BBC Books.

13. Leyhausen, P., Cat Behavior: The predatory and social behavior of domestic and wild cats. Garland series in ethology. 1979, New York: Garland STPM Press.

14. Fitzgerald, B.M. and Turner, D.C., Hunting Behaviour of domestic cats and their impact on prey populations, in The Domestic Cat: The biology of its behaviour, D.C. Turner and P.P.G. Bateson, Editors. 2000, Cambridge University Press: Cambridge, U.K.; New York. p. 151–175.

15. Turner, D.C. and Meister, O., Hunting Behaviour of the Domestic Cat, in The Domestic Cat: The Biology of Its Behaviour, D.C. Turner and P.P.G. Bateson, Editors. 1988, Cambridge University Press: Cambridge.

16. Thompson, B., The Backyard Bird Watcher’s Answer Guide. 2008: Bird Watcher’s Digest.

17. Bird, D.M., Crouching Raptor, Hidden Danger, in The Backyard Birds Newsletter. 2010, Bird Watcher’s Digest.

18. Robbins, C.S. and Blom, E.A.T., Atlas of the breeding birds of Maryland and the District of Columbia. Pitt series in nature and natural history. 1996, Pittsburgh, PA: University of Pittsburgh Press.

The Scat Hits the Fan

Relative to other studies of the domestic cat’s predatory habits, Carol Fiore’s 2000 thesis work is cited only occasionally in the literature. [1, 2] Indeed, it might easily go unnoticed were it not for its inclusion in the American Bird Conservancy’s brochure Domestic Cat Predation on Birds and Other Wildlife, and the fact that Fiore posted a summary of the study on her website—making much of its content available to anybody interested in the topic.

Fiore’s “primary goal,” she writes, “was to estimate the number of cats in Wichita, the average number of birds killed per cat and the total number of birds killed by cats each year.” [3] In fact, there was more to it than that.

Fiore was also trying to quantify the number of birds killed by cats without their owners’ knowledge, thereby addressing a concern frequently expressed by researchers whose predation estimates rely on prey records kept by cat owners. [4–7] In other words, how many birds were being killed by cats, really?

Fiore’s thesis project was an ambitious undertaking—perhaps too ambitious. Although her goal was admirable, her small sample size, flawed analytical methods, and various confounding factors cast considerable doubt over her findings. In addition, Fiore’s thesis document is peppered with evidence of bias. Indeed, she raises questions about her motivation for the project (and underlying assumptions) when, early on, she refers uncritically to the ABC’s Cats Indoors! campaign and the Wisconsin Study, and mischaracterizes the work of William George (see Note 1).

I’m afraid that, in the end, Fiore’s work does little to enhance our understanding of the domestic cat’s hunting behavior. In fact, because her conclusions tend to misrepresent the study’s findings, Fiore actually does more to perpetuate the mythology surrounding predation than the science.

The Study
Fiore’s research incorporated several methods, each intended to provide a key piece of the predation puzzle:

  1. Twenty-eight Wichita, Kansas cat owners were recruited and asked to record the number and, when possible, also the species, of birds killed by their 41 cats over the period of approximately one year.
  2. Some of these same participants were asked to collect scat samples, which were then analyzed for feathers. Detection of feathers was used to account for kills not reported by cat owners.
  3. The behavior of eight participating cats was observed with the help of radio collars.
  4. Cat density in the area was estimated by combining telephone survey results (regarding the proportion of area cats that received the rabies vaccine) with information from local veterinarians (regarding the yearly total of rabies vaccines administered to cats).
  5. Using Christmas Bird Count data, the density of Northern Cardinals in the Wichita area was estimated.
  6. The impact of free-roaming cats on the population of cardinals was then estimated by combining findings from each of the investigations described above (with the exception of the radio collar monitoring).
  7. A second telephone survey was conducted, this time to learn about residents’ attitudes concerning possible cat regulations (e.g., leash laws, licensing, etc.).

Birds Brought Home by Cats
Twenty-nine (71%) of the cats were reported to have killed birds during the study period, while 12 (29%) were credited with no kills. (These figures would later be adjusted based on the results of the scat analysis, as described below.) However, multi-cat households posed a particular problem. “For owners with more than one cat,” writes Fiore, “kills were alternated between cats if the owner was unsure of the cat responsible.” [3]

As a result of her “alternating attribution” (my term, not Fiore’s) method, it’s possible that five cats were incorrectly included among the hunters (see Note 2 for details). If so, the proportion of hunters was not 71%, but 61%.

Other Studies
Either way, Fiore’s findings correspond reasonably well with those of a five-month survey of 618 British households, in which 986 cats brought home 14,370 prey items. This research revealed that, although 91% of cats returned at least one item, “approximately 20–30% of cats brought home either no birds or no mammals.” [5] Her results also seem to be in line with those published by Churcher and Lawton, whose yearlong “English Village” study (involving approximately 70 cats and 1,090 documented prey items) found that that 8.6% of cats brought home no prey [4] (though the authors don’t specify the percentage of cats that returned no birds).

On the other hand, it is not uncommon for such studies to find that more than half of the study cats returned no prey. In their pilot study of cat predation in Bristol (UK), for example, Baker et al. reported that 77 cats returned a total of 212 prey items to 52 participating households, but that “in each sampling period, the majority of cats (51–74%) failed to return any prey.” [6] Their subsequent 12-month study (this time involving 186 Bristol households, 275 cats, and 495 prey items) found a similar level of apparent non-hunters: roughly 61%. [7]

Any number of factors might contribute to these apparent differences, perhaps the most likely “culprits” being environmental (e.g., density of both birds and cats, habitat type and size, etc.) and sampling bias (as Baker et al. put it, “cat owners whose pets were killing lots of birds may have wished to hide the fact; alternatively, they may have been keen to show off their cat’s prowess.” [7])

Add It Up
Fiore began to quantify predation by calculating, based on the number of birds brought home by study cats, an average number of birds killed each year per cat. But, as I’ve discussed previously, using the average to describe predation rates (the distribution of which is highly skewed) overestimates the impact of cats on wildlife. Barratt offers a useful rule-of-thumb method (one echoed by Fitzgerald and Turner [8]) as an alternative:

“…median numbers of prey estimated or observed to be caught per year are approximately half the mean values, and are a better representation of the average predation by house cats based on these data.” [9]

Using the median—1.91 birds/cat/year—instead of the mean, cuts Fiore’s estimated predation rate of 3.44 nearly in half. (Among the more puzzling items I uncovered while reviewing Fiore’s thesis was her apparent miscalculation of the average predation rate—where Fiore comes up with 3.44 birds/cat/year, I get only 2.79. See Note 3 for a detailed explanation.)

In any case, what’s far more interesting is how Fiore adjusts her estimate based on the results of feathers discovered in scat.

Scat Analysis
Three of Fiore’s participants (who, together, owned six of the study cats) collected and bagged their cats’ scat for five consecutive days on a monthly basis. A fourth owner participated in this part of the study for just one month, and collected scat for three days.

Additional scat data was acquired via “litter box cleanups,” in which “a few volunteers were convinced to bag the entire contents of the litter box when it was cleaned.” [3] The results, according to Fiore, were rather dramatic:

“Out of 215 separate scat analyses, each of which could have composed several beakers of fecal material, feathers were found a total of 28 times. In only one instance, however, did the owner know that a bird had been killed and/or consumed.” [10]

Equally dramatic were the mathematical and statistical gymnastics Fiore employed to arrive at her conclusions. Her figure of 21%, for example, as “a mean value of the percentage of time a cat could be expected to ingest a bird with no owner knowledge,” [10] remains a mystery to me. Despite numerous attempts, I have been unable to sort out exactly how Fiore arrived at this figure.

Dividing 27 occurrences of “unexpected” feathers by 214 total analyses (subtracting in each case for the one instance of “expected” feathers) ought to get us close, it seems—but falls well short (12.6%).

Litter Box Cleanups
Of the 215 analyses, 24 were litter box cleanups, a data collection method plagued with problems. To begin with, only 11 owners (representing 19 cats) participated. Fiore acknowledges the limitations associated with this small sample size, but overlooks a thornier issue.

Fiore considered each cleanup—regardless of how many cats were using the litter box, or for how many days—a single data sample. If a feather was found during analysis (the details of which are described on Fiore’s website), then one additional kill was attributed to a single cat (again, alternating among cats in multi-cat households). While this is a conservative approach in one respect—no more than one bird could be recorded for any positive result—it fails to adequately account for the high number of negative results. A litter box containing the waste of three cats, accumulated over a period of five or more days (six of the 24 cleanups were of this type, and in only one case were feathers found), was treated no differently from one containing a single day’s waste from one cat.

This per-household approach allows a negative result in the first case to be offset by a positive result in the second—despite their very different implications.

On the other hand, at least two volunteers involved in the litter box cleanups also owned indoor cats, and it was impossible to determine whether it was their indoor or indoor/outdoor cats that were “contributing” to the study. This may have resulted in some false negatives.

Given all the uncertainty involved with Fiore’s litter box cleanups, it’s difficult to see how this aspect of her study contributes in any meaningful way to the overall findings. Better, I would say, not to include these results in any calculations—and perhaps disregard them entirely.

Monthly Collections
Fiore’s primary method (making up 191 of the 215 analyses) for scat analysis proved less problematic than the litter box cleanups—but was not without its own shortcomings.

Again, the sample size was quite small—only four participants in all (representing seven cats). And, once again, owners of multiple cats (two of the three long-term participants) were treated—from a statistical point of view—as if they each owned just one cat. A negative result in a three-cat household was weighted the same as an instance of feathers found in a single-cat household.

Worse, by alternating attributions of kills that could not linked to a specific cat in a multi-cat household, Fiore effectively makes hunters out of non-hunters (see Note 2 for a detailed explanation). In fact, given enough of these attributions—and it wouldn’t take many—all of the study cats would be categorized as killers.

Taking into account the number of cats in each household that participated in monthly collections (see Note 4), the number of scat analyses rises dramatically, from 215 to 354—and the average occurrence of feathers drops to just 7.6%.

Lucky 13
In the case of Cat 13—the study cat with the most “scat kills” (instances of feathers detected in scat when no birds were returned home) by far—feathers were found in 14 of 80 (17.5%) daily samples collected, prompting this reaction from Fiore:

“It is interesting to speculate as to the outcome of this study if all the volunteer owners had been as conscientious as this particular owner in collecting scat every month. Additionally this owner, who is retired, is very mindful of her cat’s whereabouts but still failed to find many kills.” [3]

But even Cat 13’s apparent penchant for secretive hunting yielded a frequency of found feathers well below Fiore’s suggested overall rate of 21%. And what about the other two long-term participants, whose 23 monthly samples (108 days’ worth—collected from five cats, not one, don’t forget) revealed just eight occurrences of feathers? Their frequency of secretive hunting was 7.4%—before accounting for the multiple cats involved (as described in Note 4), which would drop the rate to just 3%.

Was the owner of Cat 13 any more conscientious than the other two? Perhaps. Fiore notes that this woman, “appeared to be very serious about the study and never failed to turn in scat on a monthly basis; reminders were never required.” [3] Still, the other owners were hardly sitting on the sidelines—they turned in 108 samples between them. And it’s not clear what detrimental effect requiring a reminder might have had on the results; on the contrary, Fiore writes: “It is believed that scat volunteers conducted their collection correctly.” [3]

It’s difficult not to detect bias in Fiore’s praise for the diligence demonstrated by Cat 13’s owner—or, more to the point, her appreciation for the cat’s performance. Although this cat’s behavior is—as illustrated by Fiore’s own data—exceptional, Fiore seems to suggest that it’s the norm.

Corroboration and Disclaimers
Fiore is quick to point out various factors that would have allowed kills to go undetected by scat analysis. The condition of the birds recovered, for example, suggests that some cats don’t eat their prey, in which case scat would not have contained feathers. Nestlings, because they lack feathers, also would go undetected.

And even adult birds, suggests Fiore, may not have feathers to be discovered later. “Generally,” she writes, “cats pluck the feathers before consuming the bird.” [3] Although Fiore cites the work of other researchers on this point (work I’ve yet to chase down), her own findings seem to contradict this claim; plenty of feathers were found in scat. (Fiore’s claim also begs the question: If cats are expected to strip the feathers from the birds they kill, why use feathers found in scat as a measure of predation?)

Fiore is doubtful that “one of the study cats ate a bird it did not kill and that in turn feathers were detected in the scat,” [3] but Fitzgerald and Turner have suggested otherwise:

“Carrion is eaten, but is difficult to distinguish from animals killed by cats, unless it is from a large animal that a cat could not kill (e.g., sheep or kangaroo). Even the presence of maggots with the food is not a certain indicator, because cats may return later to prey they have killed and cached.” [8]

Although Fiore acknowledges the challenges inherent in her analysis method, she argues that they are outweighed by the benefits:

“Scat analysis is probably the most reliable estimate of bird kills, although it is a very conservative one. The results are hard to refute. When a feather is found it is proof that a kill was made or a carcass consumed… scat analysis is important because often cats do not bring their kills to the owner, and frequently the owner is not home to accept a kill should one be presented. Many of the owner volunteers reported not seeing their cat(s) for many days in a row (one owner did not see her cat for several months during the study). Collected kills were very conservative, and seemed to be based in part on the relationship of the owner with their cat(s). Unfortunately, absentee owners were the ones most unwilling to provide scat.” [3]

It seems Fiore wants to have it both ways: When it comes to defending the value of scat analysis, she’s quick to point out how much predatory activity the owners might be missing. When she’s emphasizing the conservative nature of prey tallies, though, Fiore cites a number of detailed firsthand accounts from cat owners—painting a rather different picture of owner involvement:

  • “There were numerous calls during the course of data collection about missing remains, cats seen eating birds but no remains could be found, cat running off with prey…”
  • “The wife of one of the volunteers admitted to seeing her cat drag a cardinal under the porch, but she would not retrieve it…”
  • “The owner of Cat 30 reported that she had seen… her cat eat an entire bird (even the head) and that there was no evidence left to give us.”

Her inconsistency raises questions not only about her findings, but also—far more unsettling ones—about her objectivity as a researcher.

Found Feathers
Despite results that are—at best—mixed, Fiore’s conclusions are imbued with certainty and drama. They also tend to misrepresent her research. Fiore’s claim that “scat analysis may indicate, as in this study, that a far greater number of birds are consumed than was previously thought” [3] is based on her misuse of means to characterize predation levels. Using medians instead, it becomes clear that—in terms of the distributions’ central tendency—there is no difference between her original data set and the one that includes scat kills.

More problematic, though, are Fiore’s claims about the secretive hunting habits of cats:

“Probably the most important information which can be gained from the scat analysis (coupled with owner bird collection) is that most cats do kill birds. And in all cases but one, when feathers were found in scat, the owner was unaware that the cat had eaten a bird. This and other data from this study would seem to refute Dr. Patronek’s claim that ‘cats tend to bring prey home.’” [3] (See Note 5 for details regarding Fiore’s apparent dispute with Patronek.)

Actually, Fiore’s own data indicate that cats do, in fact, “tend to bring prey home”—nearly four in five, if her mysterious 21% figure is to be believed. And her assertion about the surprising nature of kills revealed through scat analysis is—although technically true—highly misleading. She seems to be suggesting that scat collection was done randomly, in which case we would expect some collections to correspond with documented kills. Fiore’s reporting, however, indicates no such randomness. In fact, it’s entirely likely that participants (thinking such activity would at least be redundant, or worse, detrimental to the study) would have collected scat only when they were unaware of their cat(s) having killed a bird.

By framing her findings this way, Fiore effectively dismisses the vast majority of analyses (187 of 215, or 87%, using her analysis method; 326 of 354, or 92%, accounting for multi-cat households) in which no feathers were found.

When the ABC summarizes Fiore’s work in their brochure Domestic Cat Predation on Birds and Other Wildlife, they only make matters worse by conflating different aspects of her research:

“In a study of cat predation in an urban area, 83% of the 41 study cats killed birds. In all but one case, when feathers were found in scat, the owner was unaware that their cat had ingested a bird. In fact, the majority of cat owners reported their cats did not bring prey to them. Instead, the owners observed the cats with the bird or found remains in the house or in other locations.” [11]

Reading the ABC’s version, one might easily get the impression that all 41 cats were involved in the scat analysis, or that the scat collections were done randomly. (Or that cats, in order to be considered cooperative participants in predation studies, are expected to deposit their prey in the laps of their owners, or some other pre-determined location.)

Connecting the Dots
Let’s set aside my (numerous) complaints regarding Fiore’s scat analysis, and my claim that she both miscalculated and misused the average predation rate. Assuming both figures are valid, Fiore’s use of that 21% figure to adjust the predation rate upward, from 3.44 to 4.2 birds/cat/year is also a problem. The scat analysis should (again, assuming it was done properly, included sufficient sample sizes, etc.) reveal something about the secretive hunting behavior of the study cats—in terms of (1) its frequency, and (2) its extent. Fiore’s misstep is in linking the frequency directly to predation levels.

Properly adjusting the estimated predation level would involve, first, correcting the proportion of cats that hunt to account for the frequency of secretive hunters. Using Fiore’s data to illustrate:

71% + [(100%-71%) x 21%] = 77%

Once we adjust for those cats that don’t bring prey home, we can multiply this figure by the number of outdoor cats (see Note 6). Again, using Fiore’s data (described in the Cat Density section below):

40,836 pet cats x 43% allowed outdoors = 17,559 hunting cats

Multiplying this result by the median predation rate (1.91), we get a total of 33,538 birds/year killed by pet cats in Wichita—less than half Fiore’s estimate of 73,750. (This figure might be refined further by considering separate predation levels: one for the secretive hunters, and another for those cats known to bring prey home. Unfortunately, Fiore’s sample size is too small to make such a comparison, but it’s not difficult to imagine different hunting behaviors resulting in different success rates.)

To reiterate, I’m using Fiore’s numbers here only to illustrate how I would connect the dots between scat analysis results and predation levels.

Two Key Points
Fiore’s goal of obtaining a more accurate tally of birds killed by cats was (and is) admirable. However, her use of scat analysis was largely unsuccessful in achieving that goal. In fact, Fiore’s analysis method actually added to the uncertainty in two important ways:

  1. By alternating attributions of kills that can’t be linked to any one cat in a multi-cat household, Fiore essentially categorizes each one of them as a hunter.
  2. By weighting multi-cat households no differently from single-cat households, Fiore ignores a great deal of evidence suggesting that most cats are not, in fact, hunting without their owners’ knowledge. Although the number of “scat kills” is conservative as a result, her analysis method gives greater importance to what is unknown than to what is known.

Radio Tracking
Among the many challenges Fiore ran into while trying to track study cats were owner objections, physical barriers (e.g., fences), and radio signal strength/continuity in an urban setting. As a result, she was able to study only eight cats for a total of 57 hours (almost all during daylight hours).

Given the limited value of Fiore’s tracking activities—and my focus on the aspects of her thesis that pertain more directly to predation—I’ll move on to her estimate for the number of cats in Wichita.

Cat Density
Fiore used two different methods to estimate the number of cats in Wichita. The first, which is rather clever, involved combining the results of two telephone surveys: the Pet Ownership Survey was used to (among other things) poll respondents about whether or not they had vaccinated their cat(s) against rabies; a survey of local veterinarians was used to estimate the annual total of such vaccinations in Wichita. “If 500 cats received vaccinations,” writes Fiore, “and respondents indicated that 50% of pet cats had been vaccinated, 1000 cats would be the expected density.” [10]

For the second method, Fiore multiplied the number of Wichita households by the estimated number of cats per household (1.52), as determined through a random telephone survey.

Results of the first method yielded an estimate of 35,737 pet cats in Wichita, whereas the second method produced an estimate of 40,836 pet cats. (The skewed nature of the cats/household distribution (many owners having one or two cats, and a few having many cats) will tend to push such estimates upward.)

In addition, Fiore estimates (in her original thesis document, but not in the summarized version that appears on her website) the number of stray and feral cats in the city, ultimately arriving at a figure of 124,537. Deriving such estimates is always dodgy work, as so little trustworthy information is available. Additional caution is in order when these figures are used to project predation levels of stray and feral cats, as Fiore has done (as described in the Christmas Bird Count section, below).

For one thing, there are some questionable assumptions wrapped up in her estimates—not the least of which is that the predation rates and patterns of stray and feral cats are similar to those of pet cats. Clifton has suggested that they are not:

“The feral cat toll on birds is unlikely to be more than half as high as the pet cat toll. First, there may be twice as many free-roaming pet cats as ferals old enough to hunt for a living. Second, ferals who hunt for a living tend to hunt mice by night, not birds, who are mostly not out at night. Third, feral cats appear to hunt no more, and perhaps less, than free-roaming pet cats. This is because, like other wild predators, they hunt not for sport but for food, and hunting more prey than they can eat is a pointless waste of energy… Finally, relatively few cats are even capable of successfully hunting birds.” [2]

Christmas Bird Count
Fiore used data from the Wichita Audubon Society’s “first area-wide bird count of Northern Cardinals,” [3] an event coinciding with the National Audubon Society’s 99th annual Christmas Bird Count. Combining this data with the number of households in the city, she estimated that there were 316,477–424,922 cardinals in Wichita at the time.

It’s important to remember, as is made clear on the North American Breeding Bird Survey website, that such surveys provide “an index of relative abundance, rather than a complete count of breeding bird populations.” Fiore admits, “a census of a single bird species effected [sic] by urban cats in Wichita is an estimate of population density within an accuracy of one order of magnitude,” [3] but persisted.

As a result, Fiore was able to compare estimates of the overall cardinal population with estimates of those killed by cats. However, her “accounting practices” suggest that she’s not exactly impartial on the subject of predation. Fiore states unequivocally, for example, “the mean of 2.98… cardinals seen per residence is high as very few surveys were returned by people who saw no cardinals.” [3] Sure that “people only reported when they saw cardinals, thus skewing the data towards high values,” Fiore discards the mean and uses frequency quantiles instead.

Among the possible sources of participant bias Fiore cites:

“…adding counts together rather than reporting total numbers seen at one time, counting birds on someone else’s property, estimating numbers by song alone, or sending in the forms with numbers that did not exist on December 19 but that the resident had seen on some previous occasion.” [3]

Perhaps she was correct in her assessment, but it’s peculiar that Fiore never expressed a similar concern for her obviously skewed distribution of birds killed by cats—and as a result, overestimated predation levels. In short, she seems determined to lower the estimate of birds in the area while at the same time raising the estimate of birds thought to be killed by Wichita’s cats. (In fact, her thesis is littered with such maneuvering; Fiore uses nearly every instance of uncertainty to imply an impact on wildlife greater than her research actually suggests.)

Fiore’s bird collection data indicated that 7% of the birds taken were Northern Cardinals. Combining this figure with her estimates of the populations of all outdoor cats and cardinals in Wichita, she concludes, “there are at least 43,035–50,285 Northern Cardinal deaths per year due to cat predation.” [3] This corresponds to roughly 15% of her estimated cardinal population—a figure Fiore describes as “extremely conservative.”

Impact of Free-roaming Cats
Considering the numerous limitations of her study (many of which she acknowledges), Fiore seems quite comfortable extrapolating her results—arguing, for example, that “over half a million birds meet their death each year in the city of Wichita because of a cat.” [3] Of course, this figure relies on dubious estimates of the number of outdoor cats, an exaggerated predation estimate, and other factors that cast serious doubt on its accuracy.

Fiore’s confidence may come, in part, from the fact that other researchers have reported similar findings. But, as I have gone to great lengths to emphasize over the past few months, such findings rarely hold up to careful scrutiny. And sometimes, results are simply misunderstood—as when Fiore misinterprets Fitzgerald’s work:

“…several studies have been done to access [sic] the importance of birds as a percentage of total diet, as in Fitzgerald [12] who estimates birds represented 21% of cat diets.” [3]

In fact, Fitzgerald was referring not to the percentage of dietary intake, but of how often birds were found in scat or stomach contents (a distinction I explain in detail here):

“On all continents, birds are usually much less important than mammals; birds were present on average at 21 per cent frequency of occurrence, and mammals at 68 per cent. Many species are represented by just one or two individuals.” [12]

Something else Fiore overlooks is that the type of predation observed by her participants may have been largely compensatory; that is, the birds killed were of sufficiently poor health that they were unlikely to survive anyhow. Two studies have reported such findings. [7, 13] If this were the case, even her inflated estimates—however dramatic sounding—would actually have little impact on the population of Wichita’s birds.

In any case, the cardinals in the area seem to be doing fine. Between 1970 and 2000, Wichita’s human population increased 24.5%, from 276,554 to 344,284. Such an increase—accompanied by various related development activities—is generally associated with habitat loss, fragmentation, pollution, and any number of other factors that adversely affect bird populations. Including more cats. Nevertheless, data from the North American Breeding Bird Survey suggests that the number of Northern Cardinals in the area was on the increase over this period.

Wichita Cardinals Over Time
Caption: BBS Data: Northern Cardinals for Three Wichita-area Survey Routes (adapted from North American Breeding Bird Survey website)

Cat Regulations
Fiore used a telephone survey of Wichita residents to inquire about a range of pet ownership issues, as well attitudes concerning possible regulations affecting cats/cat owners. Among the questions Fiore posed to Wichita pet owners:

“At the present time dogs have to be licensed and kept on leashes. How do you feel about having cats regulated so that they would have to be licensed and confined to the owner’s property?”

Thirty-one percent of cat owners were completely opposed, while 44% said they were at least somewhat in favor—“a surprisingly high figure,” as Fiore notes. Pet owners were then asked a follow-up question:

“If it were found that unregulated cats are killing too much wildlife, would you change your opinion?”

Survey results are always tricky to interpret, and two people can often draw very different conclusions from them. Rather than focus on the responses, then, I’d like to take just a moment to focus on the question—starting with the term unregulated. Is that even necessary? How about simply cats? And what do me mean by wildlife here? And how much is too much?

Nearly half of respondents said that they would not change their minds, and Fiore sounds downright exasperated with their explanations:

“Cat owners are in denial about what their cats are doing. They seem sad over the death of a cardinal, but they refuse to take responsibility for the cat by stating ‘There is nothing I can do’ or ‘…but that’s what cats do.’ The owner of study cat 14 wrote ‘Cats are part of nature same as birds. Species come and go. I don’t think nature should be artificially regulated.’” [3]

Fiore clearly disagrees. Indeed, she tipped her hand much earlier, when, in Chapter 1, she wrote:

“If a human killed any of these birds or was caught in possession of them without a valid permit, he or she would face penalties including fines, and depending on the severity and species, possible jail time. Cats across America and their owners face no punishment.”

*     *     *

A story in the April 18, 1998 edition of The Wichita Eagle explained Fiore’s proposed project this way:

“Fiore, a graduate student at Wichita State University, will spend a year counting Wichita cats and their feathered victims for her master’s thesis. As bird populations decline, Fiore thinks it’s important to know how far cats are sinking their teeth into the feathered world… She points out that even the cutest kitty can be a remarkable hunter, although skill varies from cat to cat. But Fiore doesn’t want people to think she’s anti-cat. ‘I’m out to study the problem.’” [14]

In the same piece, Fiore brings up the Wisconsin Study (referring to its “intermediate value” of 39 million birds), and it’s revealed that she’s the vice president of the Wichita Audubon Society. Nevertheless, Fiore assures readers of her objectivity: “We’re just scientists who want to see if there’s a problem.”

Fiore’s thesis dedication, too, suggests an air of integrity and goodwill:

“This thesis is dedicated to my cat owner volunteers who made this study possible and to cat lovers and bird lovers around the world in the hopes that we can all work together to preserve native wildlife.” [3]

Having spent weeks reviewing Fiore’s work, though, I’m not buying it. In fact, I can’t help but read in her dedication an inside joke of sorts: her invitation is to preserve native wildlife; domestic cats, as she makes clear elsewhere, are not native.

In a follow-up story for The Wichita Eagle, Fiore reported her results: Wichita cats kill anywhere from 542,000 to 645,000 each year. But, according to the Eagle’s Roy Wenzl, it wasn’t the results that got some residents worked up. “Fiore’s study upset people. Not what she found. But what she did, in raising the question.” [15]

“‘I didn’t understand that,’ said Bob Gress, a cat owner, a naturalist and the director of the Great Plains Nature Center, who helped her with her study. ‘All she was doing was collecting information. I don’t think any of us should ever be afraid of the truth,’ Gress said. ‘But some people saw this as an assault on cats. Even some veterinarians seemed to resent what she was doing.’” [15]

Gress’ comment got me thinking not just about Fiore’s thesis, but also about how it’s been used—primarily by the ABC. As much as we might like to believe otherwise, scientific inquiry doesn’t happen in a vacuum; there is always a context to consider. It’s clear from her document that Fiore was well aware of the debate surrounding free-roaming cats at the time—and must have a good idea, too, of the possible implications of her work (e.g., ammunition for those who oppose free-roaming cats and TNR, the possible wholesale extermination of stray and feral cats, etc.).

And then there’s the matter of just how much truth there is in Fiore’s findings—plagued as they are by her flawed analysis and obvious bias.

Which is not to say that she (or anybody else) should be discouraged from studying such complex, controversial issues. But there is a great responsibility that comes with such endeavors. Fiore, in her thesis work, simply didn’t live up to that responsibility.

Notes
1. Fiore writes: “A researcher in southern Illinois estimated that his three house cats, which he followed for 6 years, only brought home about 50% of killed prey.” [16] As I’ve pointed out previously, this is a surprisingly common misunderstanding of George’s work. In fact, George was merely adjusting predation levels based on the fact that the “delivery area” was not always monitored: “…the study registered 50 percent of the cats’ captures—a percentage roughly corresponding to: 1, the average amount of total time the delivery area was under observation for recording prey; and 2, the number of prey items logged in the same year when the delivery area was under continuous day-and-night scrutiny, compared to the number logged (during equivalent seasonal and hourly periods) when continuously scrutinized for lesser amounts of time.” [16]

2. Fiore provides little detail regarding the application of her alternating attribution method, requiring some speculation on my part. An example, however, may prove illustrative. Consider Cats 17 and 18, which lived in the same home. During the bird collection phase of the study, Cat 17 was credited with just two kills. Cat 18, on the other hand, brought home 17 birds—clearly the more successful hunter. The question is: Did Cat 17 really kill those two birds, or are these simply the result of kills that could not be attributed to either cat?

At any time during the yearlong study, kills that could not be connected directly to a particular cat were, as Fiore explains, “alternated between cats.” Imagine if, at the time Cat 17 had 15 known kills, another kill was discovered—but this time, it was unclear which cat was responsible. That kill, then, would be attributed to Cat 17, bringing its total to 16. The next such kill would be attributed to Cat 18—effectively shifting its status from non-hunter to hunter. Two more such instances would yield the results described by Fiore: two kills for Cat 17 and 17 for Cat 18—though it should be clear that just two “mystery kills” would, using Fiore’s analysis method, create the impression that both cats are hunters. (In fact, were it not for their random numbering—Cat 17 being credited with the first “mystery kill” only because of its lower ID number—such an impression would result from just one such kill.)

To be clear: the scenario described above is speculative. But, given the impact of Fiore’s alternating attributions—increasing rather dramatically the proportion of apparent hunters—careful scrutiny is warranted.

3. Calculating the mean should be quite straightforward, of course. Fiore first calculated a daily rate for each cat by dividing that cat’s catch by the number of days in which its owner participated in the study. She then averages that rate over all 41 cats (coming up with 0.0094, compare to my 0.0076), and multiplies the result by 365 days/year.

4. Using this analysis method, a five-day collection from a three-cat household would constitute not five, but 15 analyses. Now, there’s no way of knowing that all three cats contributed to the scat collection; conversely, there’s no reason to think that just one cat contributed, as Fiore assumes.

5. At times, Fiore’s thesis reads as if it was a rebuttal to Gary Patronek’s article, Free-roaming and feral cats—their impact on wildlife and human beings, which was published around the time Fiore was conducting her research. Interestingly, had Fiore read Patronek’s paper more closely, she might not have used the mean to estimate predation rates. “The small proportion of cats with a large number of kills,” writes Patronek, “indicate that the number of animals killed per cat has a skewed distribution, which would tend to bias the mean upward.” [17]

6. Fiore is skeptical of her Pet Ownership Survey results, which indicate that 43% of cat owners keep their cats indoors (“People who interpreted this question to mean that because the cat was inside ‘most of the time’ it was an indoor cat, would be incorrect for purposes of this study.” [10]). However, as Merritt Clifton points out, it’s likely that she actually overestimates the number of outdoor cats when she “decided, based on a survey of Wichita residents, that about half of all cat-keepers allow their cats to roam, and presumed that could be extrapolated to mean that half of all pet cats roam.” This, writes Clifton, contradicts Animal People findings “that cat-keepers whose cats do not roam have, on average, from two to three times more cats than those whose cats can roam.”  [2] Further support comes from a 2003 survey that found 60% of cats were kept strictly indoors, and nearly half of those allowed outdoors were out for less than two hours each day. [18]

Literature Cited
1. Dauphiné, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2009. p. 205–219.

2. Clifton, M. Where cats belong—and where they don’t. Animal People 2003 [cited 2009 December 24].  http://www.animalpeoplenews.org/03/6/wherecatsBelong6.03.html.

3. Fiore, C.A., The Ecological Implications of Urban Domestic Cat (Felis catus) Predation on Birds In the City of Wichita, Kansas, in College of Liberal Arts and Sciences. 2000, Wichita State University: Wichita, Kansas

4. Churcher, P.B. and Lawton, J.H., “Predation by domestic cats in an English village.” Journal of Zoology. 1987. 212(3): p. 439-455.

5. Woods, M., McDonald, R.A., and Harris, S., “Predation of wildlife by domestic cats Felis catus in Great Britain.” Mammal Review. 2003. 33(2): p. 174-188.

6. Baker, P.J., et al., “Impact of predation by domestic cats Felis catus in an urban area.” Mammal Review. 2005. 35(3/4): p. 302-312.

7. Baker, P.J., et al., “Cats about town: is predation by free-ranging pet cats Felis catus likely to affect urban bird populations? Ibis. 2008. 150: p. 86-99.

8. Fitzgerald, B.M. and Turner, D.C., Hunting Behaviour of domestic cats and their impact on prey populations, in The Domestic Cat: The biology of its behaviour, D.C. Turner and P.P.G. Bateson, Editors. 2000, Cambridge University Press: Cambridge, U.K.; New York. p. 151–175.

9. Barratt, D.G., “Predation by house cats, Felis catus (L.), in Canberra, Australia. II. Factors affecting the amount of prey caught and estimates of the impact on wildlife.” Wildlife Research. 1998. 25(5): p. 475–487.

10. Fiore, C.A. and Sullivan, K.B. (2000) Domestic Cats (Felis catus) Predation of Birds in an Urban Environmenthttp://www.carolfiore.com/Article.html Accessed July 27, 2010.

11. ABC, Domestic Cat Predation on Birds and Other Wildlife. n.d., American Bird Conservancy: The Plains, VA. www.abcbirds.org/abcprograms/policy/cats/materials/predation.pdf

12. Fitzgerald, B.M., Diet of domestic cats and their impact on prey populations, in The Domestic cat: The biology of its behaviour, D.C. Turner and P.P.G. Bateson, Editors. 1988, Cambridge University Press: Cambridge; New York. p. 123–147.

13. Møller, A.P. and Erritzøe, J., “Predation against birds with low immunocompetence.” Oecologia. 2000. 122(4): p. 500-504.

14. Potter, T., Counting Cats and Their Winged Prey, in Wichita Eagle, The (KS). 1998. p. 9A

15. Wenzl, R., Are You Harboring a Killer on Your Couch?, in Wichita Eagle, The (KS). 1999. p. 9A

16. George, W., “Domestic cats as predators and factors in winter shortages of raptor prey.” The Wilson Bulletin. 1974. 86(4): p. 384–396.

17. Patronek, G.J., “Free-roaming and feral cats—their impact on wildlife and human beings.” Journal of the American Veterinary Medical Association. 1998. 212(2): p. 218–226.

18. Clancy, E.A., Moore, A.S., and Bertone, E.R., “Evaluation of cat and owner characteristics and their relationships to outdoor access of owned cats.” Journal of the American Veterinary Medical Association. 2003. 222(11): p. 1541-1545.

Repeat After Me

Listening to NPR’s On the Media this weekend, I was struck by a story (first broadcast in 2006) about how certain “sticky” numbers—however dubious—find their way into the media landscape and beyond, as On the Media co-host Brooke Gladstone noted:

“Four years ago, we delved into the mysterious number, said to be 50,000, of child predators online at any given time. It was cited by the NBC Dateline program “To Catch a Predator” and also by then Attorney General Alberto Gonzales.

But spokespersons for the FBI, the National Center for Missing and Exploited Children, and the Crimes against Children Research Center said it was not based on any research they were aware of. The A.G.’s office at the time, well, they said it came from Dateline.”

Wall Street Journal columnist Carl Bialik, who spoke to Gladstone for the story, described the process whereby such slippery figures gain traction:

“An interesting phenomenon of these numbers is that they’ll often be cited to an agency or some government body, and then a study will pick it up, and then the press will repeat it from that study. And then once it appears in the press, public officials will repeat it again, and now it’s become an official number.”

All of which sounds very familiar—Bialik could easily be describing the “official numbers” put out by so many TNR opponents. Among those that have gained the most currency are the predation estimates from the Wisconsin Study, the American Bird Conservancy’s figure for the proportion of birds in the diets of free-roaming cats, and Dauphiné and Cooper’s estimate of free-roaming cats in the U.S.

The Wisconsin Study
Despite its having been discredited long ago (see, for example, “Addressing the Wisconsin Study”), the Wisconsin Study continues to be cited as if its estimate of 8–219 million birds killed by the state’s rural cats [1] was credible. As recently as last year, Longcore et al. cited the work in their essay “Critical Assessment of Claims Regarding Management of Feral Cats by Trap–Neuter–Return.” [2]

This, despite the fact that—15 years earlier—co-author Stanley Temple told the press:

“The media has had a field day with this since we started. Those figures were from our proposal. They aren’t actual data; that was just our projection to show how bad it might be.” [3]

It’s true: the media has had a field day. Among the major newspapers to cite the Wisconsin Study are the Wall Street Journal [4], the New York Times [5], and the Los Angeles Times [6]. However, as I’ve described previously, it’s been the wildlife conservationists and bird advocates who’ve really had a field day with the Wisconsin Study:

  • The American Bird Conservancy (ABC) refers to the study, in its brochure Domestic Cat Predation on Birds and Other Wildlife. And the ABC goes one step further, pointing out that Coleman and Temple’s estimate was for rural cats, and that “suburban and urban cats add to that toll.” [7]
  • A 2009 article in Audubon Magazine suggests “cats were annually knocking off somewhere in the neighborhood of 8 million birds just in rural Wisconsin.” [9] To the magazine’s credit, they used Coleman and Temple’s low estimate—but none of the numbers from the Wisconsin Study are scientifically sound.

Birds Represent 20–30% of the Diet of Free-roaming Cats
According to an ABC report (downloadable from their website), “extensive studies of the feeding habits of domestic, free-roaming cats… show that approximately… 20 to 30 percent [of their diet] are birds.”

This, apparently, is the same report that Ellen Perry Berkeley debunked in her book, TNR Past Present and Future: A history of the trap-neuter-return movement, noting that the ABC’s 20–30% figure was not based on “extensive studies” at all. [10] In fact, just three sources were used: the now-classic “English Village” study by Churcher and Lawton [11], the Wisconsin Study (described above), and Mike Fitzgerald’s contribution to “The Domestic Cat: The Biology of Its Behaviour.” [12]

This gets a little complicated, so bear with me.

When Churcher and Lawton reported, “overall, birds comprised 35% of the total catch,” [11] they were referring to prey tallies recorded by study participants—not to the overall diets of the cats involved. Figures obtained through similar methods for the Wisconsin Study were 20–23%, [1, 13, 14] which the authors suggest—citing Fitzgerald’s comprehensive review of predation and dietary studies—are in line with other work:

“Extensive studies of the feeding habits of free-ranging domestic cats over 50 years and four continents [12] indicate that small mammals make up approximately 70% of these cats’ prey while birds make up about 20%.” [14]

But they’re comparing apples and oranges. Both the English Village and Wisconsin Studies report the percentage of birds returned as a portion of the “total catch,” whereas Fitzgerald reports percentage by frequency (i.e., the occurrence of birds in the stomach contents or scats of free-roaming cats), a point apparently lost on Coleman and Craven. The 21% figure [12] they refer to, then, is simply not comparable to their own (or that of the English Village study, a fact Churcher and Lawton acknowledge in their paper). As Berkeley notes, “this would put birds, as a portion of the diet of cats, at roughly 7 to 10.5 percent—nowhere near the ‘20 to 30 percent’ figures unleashed on the unscientific public by ABC!”

To put all of this into more familiar terms, it’s a bit like saying that coffee makes up 20–30% of the American diet versus saying that 20–30% of Americans drink coffee each day.

Nevertheless, 13 years after the ABC first published its report, the myth persists. The report—including the mistaken dietary figures—is still available. And the National Audubon Society has helped perpetuate the error, noting in its Resolution Regarding Control and Management of Feral and Free-Ranging Domestic Cats:

“…it has been estimated that birds represent 20–30% of the prey of feral and free-ranging domestic cats.”

Estimates of Free-roaming Cats
In January, Steve Holmer, the ABC’s Senior Policy Advisor, told the Los Angeles Times, “The latest estimates are that there are about . . . 160 million feral cats [nationwide].” Sounds like an awful lot of cats—nearly one for every two humans in the country. So where does this figure come from?

The source is a paper by Nico Dauphiné and Robert Cooper (which can be downloaded via the ABC website), presented at the Fourth International Partners in Flight conference. In it, Dauphiné and Cooper use some remarkably creative accounting, beginning with an unsubstantiated estimate of unowned cats, to which they add an inflated number of owned cats that spend time outdoors. In the end, they conclude that there are “117–157 million free-ranging cats in the United States.” [15] (For a more thorough explanation, see my previous post on the subject.)

Estimating the number of free-roaming cats wasn’t even the point of their paper. As the title—“Impacts of Free-ranging Domestic Cats (Felis catus) On Birds In the United States: A Review of Recent Research with Conservation and Management Recommendations”—suggests, the primary purpose was to describe the cats’ impact on birds. The authors’ exaggerated figure was merely a convenient route to their estimate of birds killed annually by cats: “a minimum of one billion birds” [15] (which, it should be clear, has the potential to become a very sticky number).

Holmer goes a step further, using only the upper limit of the range published by Dauphiné and Cooper, and making the subtle—but important—shift from free-ranging to feral cats.

When I asked him about this, he explained that those figures were “based on an earlier version of Nico’s latest paper and are now being updated in our materials.” I don’t know that any such changes were made; and in any event, the bogus estimate has already been published in the L.A. Times—as if it were true.

*     *     *

TNR opponents will often point to the vast collection of research studies, government reports, news accounts, and the like, that support their assertions. Drill down a bit into that collection, though, and they all start to look alike: the same familiar sources, the same flawed studies—and the same bogus figures. These figures have become the kind of “official numbers” Bialik refers to: quantitative poseurs owing their popularity to tireless—and irresponsible—repetition more than anything else.

Literature Cited
1. Coleman, J.S. and Temple, S.A., On the Prowl, in Wisconsin Natural Resources. 1996, Wisconsin Department of Natural Resources: Madison, WI. p. 4–8. http://dnr.wi.gov/wnrmag/html/stories/1996/dec96/cats.htm

2. Longcore, T., Rich, C., and Sullivan, L.M., “Critical Assessment of Claims Regarding Management of Feral Cats by Trap–Neuter–Return.” Conservation Biology. 2009. 23(4): p. 887–894.

3. Elliott, J., The Accused, in The Sonoma County Independent. 1994. p. 1, 10.

4. Sterba, J.P., Tooth and Claw: Kill Kitty?, in Wall Street Journal. 2002: New York. p. A.1

5. Barcott, B., Kill the Cat That Kills the Bird?, in New York Times. 2007: New York. http://www.nytimes.com/2007/12/02/magazine/02cats-v–birds-t.html

6. Kennedy, J.M., Killer Among Us, in Los Angeles Times. 2003: Los Angeles. http://articles.latimes.com/2003/dec/23/news/os-cat23

7. ABC, Domestic Cat Predation on Birds and Other Wildlife. n.d., American Bird Conservancy: The Plains, VA. www.abcbirds.org/abcprograms/policy/cats/materials/predation.pdf

8. FWS, Migratory Bird Mortality. 2002, U.S. Fish and Wildlife Service: Arlington, VA. www.fws.gov/birds/mortality-fact-sheet.pdf

9. Williams, T., Felines Fatale, in Audubon Magazine. 2009, National Audubon Society: New York, NY. http://www.audubonmagazine.org/incite/incite0909.html

10. Berkeley, E.P., TNR Past present and future: A history of the trap-neuter-return movement. 2004, Bethesda, MD: Alley Cat Allies.

11. Churcher, P.B. and Lawton, J.H., “Predation by domestic cats in an English village.” Journal of Zoology. 1987. 212(3): p. 439-455.

12. Fitzgerald, B.M., Diet of domestic cats and their impact on prey populations, in The Domestic cat: The biology of its behaviour, D.C. Turner and P.P.G. Bateson, Editors. 1988, Cambridge University Press: Cambridge; New York. p. 123–147.

13. Coleman, J.S. and Temple, S.A., Effects of Free-Ranging Cats on Wildlife: A Progress Report, in Fourth Eastern Wildlife Damaage Control Conference. 1989: University of Nebraska—Lincoln. p. 8–12. http://digitalcommons.unl.edu/ewdcc4/7

14. Coleman, J.S., Temple, S.A., and Craven, S.R., Cats and Wildlife: A Conservation Dilemma. 1997, University of Wisconsin, Wildlife Extension. http://forestandwildlifeecology.wisc.edu/wl_extension/catfly3.htm

15. Dauphiné, N. and Cooper, R.J., Impacts of Free-ranging Domestic Cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations, in Fourth International Partners in Flight Conference: Tundra to Tropics. 2009. p. 205–219.

Science Meets Fiction

Unhinged (book cover)

“The reason that we have a peer review process is to assess the quality and likely validity of scientific data and their interpretation… One goal of the peer review process is to assess an author’s command of the existing literature and whether or not it is being cited selectively to support the author’s views, without critical evaluation of contradictory evidence.” —Michael Hutchins, CEO and Executive Director of The Wildlife Society, May 3rd blog post.

Just a week after my previous post—in which I pointed out some high-profile failures of the peer-review process Hutchins defends—I caught this related interview on NPR’s Fresh Air.

In his book Unhinged: The Trouble with Psychiatry—A Doctor’s Revelations about a Profession in Crisis, Dr. Daniel Carlat reveals that about half the articles written about the antidepressant Zoloft where, at one time, actually ghostwritten by non-physicians working for a marketing firm, and funded by pharmaceutical giant Pfizer (the maker of Zoloft). Prominent psychiatrists were then paid to put their names on the bogus work.

Where was the peer-review process—designed to protect against such practices—in all of this? Once again, it seems, the system failed miserably. According to Carlat:

“…these were in journals such as the New England Journal of Medicine, the Journal of the American Medical Association, the American Journal of Psychiatry, etc. So essentially all the top journals that doctors read were publishing unbeknownst, I’m sure, to the journal editors—ghostwritten articles written by an advertising firm, essentially pushing the benefits of Zoloft, and they were being paid to do this by Pfizer.”

The fact that a major drug manufacturer would attempt such a thing is—sadly—not entirely surprising. The fact that these articles were actually published in a number of prestigious journals, though—that is a surprise.

And it highlights a key point I’ve made numerous times already: publication in well-regarded journals is a guarantee of neither the work’s validity nor the authors’ integrity.

Still, the most unsettling part of the story is its epilogue. A recent study cited by Carlat indicates that 10–20% of articles in such journals are still being ghostwritten. And, although the incident prompted some new policies concerning disclosure, there seems to be no accountability for the people responsible. “You would think that there would be repercussions,” Carlat told Fresh Air guest host Dave Davies. “However, there have not been any such repercussions.”

This, too, sounds familiar. Rather than address the misrepresentations, errors, and biases I pointed out in the Longcore paper, for example, Conservation Biology chose to publish more of the same.

Clearly, the “independent peer-review process” Hutchins refers to in his post is the ideal. Its real-world manifestation, however, varies considerably. Too often, it seems, the emphasis is on peers, at the expense of independence and review.

The Work Speaks—Part 7: Leaky Sink

In April, Conservation Biology published a comment authored by Christopher A. Lepczyk, Nico Dauphiné, David M. Bird, Sheila Conant, Robert J. Cooper, David C. Duffy, Pamela Jo Hatley, Peter P. Marra, Elizabeth Stone, and Stanley A. Temple. In it, the authors “applaud the recent essay by Longcore et al. (2009) in raising the awareness about trap-neuter-return (TNR) to the conservation community,” [1] and puzzle at the lack of TNR opposition among the larger scientific community:

“…it may be that conservation biologists and wildlife ecologists believe the issue of feral cats has already been studied enough and that the work speaks for itself, suggesting that no further research is needed.”

In fact, “the work”—taken as a whole—is neither as rigorous nor as conclusive as Lepczyk et al. suggest. And far too much of it is plagued by exaggeration, misrepresentations, errors, and obvious bias. In Part 6 of this series, I critiqued Christopher Lepczyk’s paper Landowners and cat predation across rural-to-urban landscapes, published in 2003. Here, I’m going to examine two studies conducted by Philip J. Baker and various collaborators.

The Studies
In the first study, Baker et al. distributed questionnaires to 3,494 households across a 4.2 km2 area of northwest Bristol (UK), and used responses to estimate cat ownership and predation levels (via prey returned home). [2] This work served as a pilot study for the subsequent study.

The second study, conducted August 2005–July 2006, was also conducted in Bristol. Added to the original 4.2 km2 site were nine 1 km2 sites. The researchers used very similar sampling methods, but, based on results of their pilot study, had somewhat more specific objectives:

  1. To quantify cat density
  2. To quantify the various species of birds killed by cats.
  3. To estimate the impact of cat predation by species and site.
  4. To determine whether the predation observed was compensatory or additive. [3]

Sources and Sinks
Among the authors’ conclusions from the pilot study was that, at least for three of the ten bird species surveyed:

“…it is possible that cat predation was significantly affecting levels of recruitment and creating a dispersal sink for more productive neighboring areas.” [2]

Dispersal sinks or habitat sinks, are patches of low-quality habitat that are unable to sustain a population of a particular species were it not for immigration from higher quality habitat patches—called sources—nearby. So, what Baker et al. are suggesting is that predation by cats may be extensive enough to deplete populations of certain bird species at their study site, such that at least some of the birds observed there were immigrants from nearby habitat.

But the authors also point out that, “despite occurring at very high densities, the summed effects on prey populations appeared unlikely to affect population size for the majority of prey species.” [2] And even for House sparrows, which were among the three species of concern (and, apparently, in decline throughout the UK’s urban areas), Baker et al. note that their “numbers appear to be stable in Bristol as a whole.”

So, is the area a habitat sink or not?

A cursory look at the theory and empirical measurement of source-sink dynamics reveals great complexity. Variations across time and geography must be taken into account—the ebb and flow of local populations might easily be overlooked or misunderstood by applying a short time horizon (i.e., 12 months) and arbitrary boundaries (i.e., those that define the study site). Annual rainfall, for example, can dramatically influence yearly population levels on a local scale. And it’s been shown that source-sink dynamics can occur over distances of 60–80 km. [4] In fact, the determination of sinks and sources in the field can be problematic enough that sources sometimes appear to be sinks and vice-versa. [5]

Given the complex nature of source-sink dynamics, the suggestion by Baker et al. that cat predation may be creating a habitat sink seems rather premature. Such assertions—despite the requisite disclaimers (the authors note only that “it is possible”)—tend to attract attention and gain traction. Longcore et al., for example, cited the pilot study in their 2009 essay, “Critical Assessment of Claims Regarding Management of Feral Cats by Trap-Neuter-Return.” [6]

Of greater interest to me, though, are the assumptions Baker et al. used to estimate the impact of cat predation.

Counting Cats and Counting Birds
In both studies, the authors quantified the impact of cat predation on bird populations by comparing different levels of predation with different bird densities. Their maximum impacts, for example, assumed that all cats were hunters—despite the fact that 51–74% of the cats included in the two studies brought home no prey at all—and that bird productivity was zero (i.e., no young birds survive to adulthood). As the authors admit:

“This was clearly not realistic, as the estimated maximum numbers of birds killed typically exceeded breeding density and productivity combined, such that the prey populations studied would probably have gone extinct rapidly at a local level or acted as a major sink for birds immigrating from neighbouring areas.” [3]

But how realistic are their other estimates?

A detailed examination of a single species at a one site (taken from the second study, for which such information is available) illustrates some flaws. I looked at House sparrows for the 1 km2 site designated as ST5277. Here, 18 participants reported that their 22 cats returned a total of 30 prey items, nine of which were birds (two of them “unidentified”). Of the birds returned home, two were House sparrows.

When it comes to estimating impacts, though, Baker et al. use figures of 332–1,245 House sparrows killed by the cats of ST5277. The maximum, we already know, is “not realistic,” but even the minimum seems awfully high. So, where are these birds coming from?

To start with, two adjustments have to be made to the original predation figure. First, the two unidentified birds are “distributed” across the categories of bird species that were identified. Then, we have to account for participant drop-out; not all of the 22 cats were surveyed for the entire year of the study. Now we’re up to an average of 8.7 House sparrows brought home annually by the cats at this site.

But of course there are more than 22 cats at ST5277. Baker et al. estimate that there are 314 of them (although we know very little about the factors that affect their hunting ability and success—for example, their access to the outdoors, age, etc.). We also know that only seven of the 22 cats included in the study brought home prey. In other words, 32% of the cats surveyed were documented hunters. Based on these numbers, then, we can estimate the yearly predation rate of House sparrows at ST5277 to be roughly 125—well short of the minimum proposed by Baker et al. (and just a quarter of their intermediate rate).

There are some minor differences between their method for estimating predation rates and mine. For the most part, though, the “missing” sparrows can be found in the authors’ use of a correction factor (3.3) proposed by Kays and DeWan to account for prey killed but not returned home. [7] Undoubtedly, cats fail to bring home all the prey they catch (though they also undoubtedly bring home prey they didn’t kill), but there is good reason to doubt Kays and DeWan’s “correction.” Among the flaws in their analysis were small, dissimilar samples of cats, and a failure to account for highly skewed data sets.

So, even setting aside the complexities of source-sink dynamics, these inflated predation rates, combined with the fact that “the estimates of breeding density presented in this manuscript should be regarded as minima,” [3] raise serious doubts about whether the site is in fact a habitat sink (or, if so, to what extent).

Compensatory and Additive Predation
As I’ve discussed previously, even accurately predicted levels of predation can be deceptive. There’s compensatory predation (in which prey would have died even in the absence of a particular predator, due to illness, starvation, other predators, etc.) and additive predation (in which healthy prey are killed). It’s the difference between, as Beckerman et al. put it, the “doomed surplus hypothesis” and the “hapless survivor hypothesis.” [8]

When it comes to relating predation to population levels, it’s critical to understand the difference, and know the extent to which each type is occurring.

To get at this critical issue, Baker et al. compared the physical attributes (e.g., muscle mass score, mean fat score, etc.) of 86 birds killed by collisions (e.g., with cars, windows, etc.) to those of 48 birds killed by cats. Although the authors point out, “the relationship between body mass and quality (i.e., likelihood of long-term survival and therefore reproductive potential) in passerines is complex,” they nevertheless conclude that the birds killed by cats “were likely to have had poor long-term survival prospects.” [3] (An earlier study comparing spleen mass arrived at essentially the same conclusion: that birds killed by cats “often have a poor health status.” [9])

Still, Baker et al. express caution about their findings:

“The distinction between compensatory and additive mortality does, however, become increasingly redundant as the number of birds killed in a given area increases: where large numbers of prey are killed, predators would probably be killing a combination of individuals with poor and good long-term survival chances. The predation rates estimated in this study would suggest that this was likely to have been the case for some species on some sites.”

But their inflated predation rates and low estimates of breeding density combine to diminish the apparent level of compensatory predation. Were these estimates adjusted to better reflect the conditions at the site, the “redundancy” the authors refer to would be reduced considerably.

*     *     *

It’s not clear why Longcore et al. cited the pilot study their essay, but left out any mention of the much larger subsequent study. Perhaps it was just a matter of timing—“Cats About Town” was published in August of 2008, while “Critical Assessment” was published in August of 2009. A year is not much time in the world of scientific journals, and it’s possible that the two manuscripts more or less crossed in the mail. On the other hand, the pilot study fits more neatly into the argument put forward by Longcore et al.—an argument that doesn’t even recognize the distinction between compensatory and additive predation.

Of course, Baker et al. did themselves no favors, either. By using inflated predation rates—the result of some peculiar, unjustified assumptions—they virtually buried the most important findings of their study.

References
1. Lepczyk, C.A., Mertig, A.G., and Liu, J., “Landowners and cat predation across rural-to-urban landscapes.” Biological Conservation. 2003. 115(2): p. 191-201.

2. Baker, P.J., et al., “Impact of predation by domestic cats Felis catus in an urban area.” Mammal Review. 2005. 35(3/4): p. 302-312.

3. Baker, P.J., et al., “Cats about town: is predation by free-ranging pet cats Felis catus likely to affect urban bird populations? Ibis. 2008. 150: p. 86-99.

4. Tittler, R., Fahrig, L., and Villard, M.-A., “Evidence of Large-Scale Source-Sink Dynamics and Long-Distance Dispersal among Wood Thrush Populations.” Ecology. 2006. 87(12): p. 3029-3036.

5. Runge, J.P., Runge, M.C., and Nichols, J.D., “The Role of Local Populations within a Landscape Context: Defining and Classifying Sources and Sinks.” The American Naturalist. 2006. 167(6): p. 925-938.

6. Longcore, T., Rich, C., and Sullivan, L.M., “Critical Assessment of Claims Regarding Management of Feral Cats by Trap–Neuter–Return.” Conservation Biology. 2009. 23(4): p. 887–894.

7. Kays, R.W. and DeWan, A.A., “Ecological impact of inside/outside house cats around a suburban nature preserve.” Animal Conservation. 2004. 7(3): p. 273-283.

8. Beckerman, A.P., Boots, M., and Gaston, K.J., “Urban bird declines and the fear of cats.” Animal Conservation. 2007. 10(3): p. 320-325.

9. Møller, A.P. and Erritzøe, J., “Predation against birds with low immunocompetence.” Oecologia. 2000. 122(4): p. 500-504.